Integrate log(sinx) from 0 to pi /2?

1 Answer
Sep 26, 2017

I=int_0^(pi/2)logsinxdx=-(pi/2)log2

Explanation:

We use the property int_0^af(x)dx=int_0^af(a-x)dx

hence we can write I=int_0^(pi/2)logsinxdx=int_0^(pi/2)logsin(pi/2-x)dx

or I=int_0^(pi/2)logsinxdx=int_0^(pi/2)logcosxdx

or 2I=int_0^(pi/2)(logsinx+logcosx)dx=int_0^(pi/2)log(sinxcosx)dx

= int_0^(pi/2)log((sin2x)/2)dx=int_0^(pi/2)(logsin2x-log2)dx

= int_0^(pi/2)logsin2xdx-int_0^(pi/2)log2dx

= int_0^(pi/2)logsin2xdx-(pi/2)log2 .............(A)

Let I_1=int_0^(pi/2)logsin2xdx and t=2x, then I_1=1/2int_0^pilogsintdt

and using the property int_0^(2a)f(x)dx=2int_0^af(a-x)dx, if f(2a-x)=f(x) - note that here logsint=logsin(pi-t) and we get

I_1=1/2int_0^pilogsintdt=int_0^(pi/2)logsintdt=I

Hence (A) becomes 2I=I-(pi/2)log2

or I=-(pi/2)log2