Integrate (sin(x-a)/sin(x+a) )^1/2?

1 Answer
Sep 10, 2017

-cosa*arc sin(cosx/cosa)-sina*ln|sinx+sqrt(sin^2x-sin^2a)|+Ccosaarcsin(cosxcosa)sinalnsinx+sin2xsin2a+C.

Explanation:

Recall that,

sin(x-a)sin(x+a)=sin^2x-sin^2a=cos^2a-cos^2x....(ast).

Let, I=sqrt{sin(x-a)/sin(x+a)}dx.

:. I=intsqrt{sin(x-a)/sin(x+a)xxsin(x-a)/sin(x-a)}dx.

=intsin(x-a)/sqrt(sin(x+a)sin(x-a))dx..............................[because, (ast)],

=int(sinxcosa-cosxsina)/sqrt(sin(x+a)sin(x-a))dx,

=cosaintsinx/sqrt(sin(x+a)sin(x-a))dx
-sinaintcosx/sqrt(sin(x+a)sin(x-a))dx,

=I_1-I_2.........(1)," say, where, "

I_1=cosaintsinx/sqrt(sin(x+a)sin(x-a))dx,

=cosaintsinx/sqrt(cos^2a-cos^2x)dx,

=-cosaint(du)/sqrt(cos^2a-u^2)....[u=cosx rArr du=-sinxdx],

=-cosa*arc sin(u/cosa),

rArr I_1=-cosa*arc sin(cosx/cosa)......................(2).

"Similarly, "I_2=sinaintcosx/sqrt(sin(x+a)sin(x-a))dx,

=sinaintcosx/sqrt(sin^2x-sin^2a)dx.........[because, (ast),]

=sinaint(dv)/sqrt(v^2-sin^2a)....[v=sinx rArr dv=cosxdx],

=sina*ln|v+sqrt(v^2-sin^2a)|.

rArr I_2=sina*ln|sinx+sqrt(sin^2x-sin^2a)|............(3).

"By (1),(2), and,(3), then,"

I=-cosa*arc sin(cosx/cosa)

-sina*ln|sinx+sqrt(sin^2x-sin^2a)|+C.

Enjoy Maths.!