Integrate (sin(x-a)/sin(x+a) )^1/2?

1 Answer
Sep 10, 2017

# -cosa*arc sin(cosx/cosa)-sina*ln|sinx+sqrt(sin^2x-sin^2a)|+C#.

Explanation:

Recall that,

#sin(x-a)sin(x+a)=sin^2x-sin^2a=cos^2a-cos^2x....(ast).#

Let, #I=sqrt{sin(x-a)/sin(x+a)}dx.#

#:. I=intsqrt{sin(x-a)/sin(x+a)xxsin(x-a)/sin(x-a)}dx.#

#=intsin(x-a)/sqrt(sin(x+a)sin(x-a))dx..............................[because, (ast)],#

#=int(sinxcosa-cosxsina)/sqrt(sin(x+a)sin(x-a))dx,#

#=cosaintsinx/sqrt(sin(x+a)sin(x-a))dx#
#-sinaintcosx/sqrt(sin(x+a)sin(x-a))dx,#

#=I_1-I_2.........(1)," say, where, "#

#I_1=cosaintsinx/sqrt(sin(x+a)sin(x-a))dx,#

#=cosaintsinx/sqrt(cos^2a-cos^2x)dx,#

#=-cosaint(du)/sqrt(cos^2a-u^2)....[u=cosx rArr du=-sinxdx],#

#=-cosa*arc sin(u/cosa),#

#rArr I_1=-cosa*arc sin(cosx/cosa)......................(2).#

#"Similarly, "I_2=sinaintcosx/sqrt(sin(x+a)sin(x-a))dx,#

#=sinaintcosx/sqrt(sin^2x-sin^2a)dx.........[because, (ast),]#

#=sinaint(dv)/sqrt(v^2-sin^2a)....[v=sinx rArr dv=cosxdx],#

#=sina*ln|v+sqrt(v^2-sin^2a)|.#

#rArr I_2=sina*ln|sinx+sqrt(sin^2x-sin^2a)|............(3).#

#"By (1),(2), and,(3), then,"#

#I=-cosa*arc sin(cosx/cosa)#

#-sina*ln|sinx+sqrt(sin^2x-sin^2a)|+C#.

Enjoy Maths.!