Let, I=int(sinx+cosx)/sqrt(sin2x)dx.I=∫sinx+cosx√sin2xdx.
We subst., sinx-cosx=t rArr (cosx+sinx)dx=dt.sinx−cosx=t⇒(cosx+sinx)dx=dt.
Further,
t^2=(sinx-cosx)^2=sin^2x-2sinxcosx+cos^2x, i.e., t2=(sinx−cosx)2=sin2x−2sinxcosx+cos2x,i.e.,
t^2=1-sin2x rArr sin2x=1-t^2.t2=1−sin2x⇒sin2x=1−t2.
:. I=intdt/sqrt(1-t^2),
=arc sint,
rArr I=arc sin(sinx-cosx)+C.
Since, sinx-cosx=sqrt2(1/sqrt2sinx-1/sqrt2cosx),
=sqrt2{sinxcos(pi/4)-cosxsin(pi/4)},
=sqrt2sin(x-pi/4), we can write,
I=arc sin{sqrt2sin(x-pi/4)}+C.
Enjoy Maths!