Integrate (sinx+cosx)/√(sin2x)?

1 Answer
Sep 10, 2017

arc sin(sinx-cosx)+C, or, arc sin{sqrt2sin(x-pi/4)}+C.arcsin(sinxcosx)+C,or,arcsin{2sin(xπ4)}+C.

Explanation:

Let, I=int(sinx+cosx)/sqrt(sin2x)dx.I=sinx+cosxsin2xdx.

We subst., sinx-cosx=t rArr (cosx+sinx)dx=dt.sinxcosx=t(cosx+sinx)dx=dt.

Further,

t^2=(sinx-cosx)^2=sin^2x-2sinxcosx+cos^2x, i.e., t2=(sinxcosx)2=sin2x2sinxcosx+cos2x,i.e.,

t^2=1-sin2x rArr sin2x=1-t^2.t2=1sin2xsin2x=1t2.

:. I=intdt/sqrt(1-t^2),

=arc sint,

rArr I=arc sin(sinx-cosx)+C.

Since, sinx-cosx=sqrt2(1/sqrt2sinx-1/sqrt2cosx),

=sqrt2{sinxcos(pi/4)-cosxsin(pi/4)},

=sqrt2sin(x-pi/4), we can write,

I=arc sin{sqrt2sin(x-pi/4)}+C.

Enjoy Maths!