Integration of dx/(3sinx+ 4cosx)?

1 Answer
Sep 1, 2017

#intdx/(3sinx+4cosx)=-1/5ln|csc(x+alpha)+cot(x+alpha)|+c#, where #alpha=tan^(-1)(4/3)#

Explanation:

#3sinx+4cosx#

= #5(sinx xx 3/5+cosx xx 4/5)#

= #5sin(x+alpha)#, where #tanalpha=4/3# or #alpha=tan^(-1)(4/3)#

Hence, #intdx/(3sinx+4cosx)#

= #1/5intcsc(x+alpha)dx#

Now let #x+alpha=u# then #dx=du# and

#1/5intcsc(x+alpha)dx=1/5intcscudu#

= #1/5int(cscu(cscu+cotu))/(cscu+cotu)du#

= #-1/5int(-csc^2u-cscucotu)/(cscu+cotu)du#

if #cscu+cotu=v#, then #dv=(-csc^2u-cscucotu)du#

and our integral becomes

#-1/5int(dv)/v=-1/5ln|v|+c#

= #-1/5ln|csc(x+alpha)+cot(x+alpha)|+c#, where #alpha=tan^(-1)(4/3)#