Integration of dx/(3sinx+ 4cosx)?

1 Answer
Sep 1, 2017

intdx/(3sinx+4cosx)=-1/5ln|csc(x+alpha)+cot(x+alpha)|+c, where alpha=tan^(-1)(4/3)

Explanation:

3sinx+4cosx

= 5(sinx xx 3/5+cosx xx 4/5)

= 5sin(x+alpha), where tanalpha=4/3 or alpha=tan^(-1)(4/3)

Hence, intdx/(3sinx+4cosx)

= 1/5intcsc(x+alpha)dx

Now let x+alpha=u then dx=du and

1/5intcsc(x+alpha)dx=1/5intcscudu

= 1/5int(cscu(cscu+cotu))/(cscu+cotu)du

= -1/5int(-csc^2u-cscucotu)/(cscu+cotu)du

if cscu+cotu=v, then dv=(-csc^2u-cscucotu)du

and our integral becomes

-1/5int(dv)/v=-1/5ln|v|+c

= -1/5ln|csc(x+alpha)+cot(x+alpha)|+c, where alpha=tan^(-1)(4/3)