Integration using substitution??

int_1^4 1/(sqrtx(4x-1))dx
and let u=sqrtx
Please help me...

1 Answer
Mar 27, 2018

I=1/2ln|9/5|

Explanation:

Here,
I=int_1^4(color(red)(1)/color(red)(sqrtxcolor(blue)((4x-1))))color(red)(dx

Let sqrtx=u=>1/(2sqrtx)dx=du=>color(red)(1/sqrtxdx=2du

and x=u^2=>x=1tou=1,x=4tou=2

I=int_1^2(2du)/(4u^2-1)

I=int_1^2(2)/((2u-1)(2u+1))du

I=int_1^2((2u+1)-(2u-1))/((2u+1)(2u-1))du

I=int_1^2[1/(2u-1)-1/(2u+1)]du

=int_1^2 1/2[2/(2u-1)-2/(2u+1)]du

=1/2[ln|2u-1|-ln|2u+1|]_1^2

=1/2[(ln3-ln5)-(ln1-ln3)]

=1/2[ln3-ln5-0+ln3]

=1/2ln((3xx3)/5)

=1/2ln(9/5)