Ionic equilibrium problem...?proof needed....
Concentration of [H^+][H+] ion in a mixture of two weak acids... if alpha_1α1 and alpha_2α2 are their degree of dissociation which are negligible w.r.t unity...K_(a_1)Ka1 and K_(a_2)Ka2 are ionization constant of the acids respectively and C_1C1 and C_2C2 is their concentration...
Concentration of
1 Answer
["H"^(+)] = 1/2 (sqrt(K_(a1)C_1) pm sqrt(K_(a1)C_1 + 4K_(a2)C_2))[H+]=12(√Ka1C1±√Ka1C1+4Ka2C2)
Note that this works best if
DISCLAIMER: DERIVATION!
Well, concentration is a state function, so we can simply choose acid 1 to go first, and acid 2 can go second, suppressed by the equilibrium of the first.
By writing out an ICE table, you would construct the mass action expression for acid 1 (say,
"HA"(aq) rightleftharpoons "H"^(+)(aq) + "A"^(-)(aq)HA(aq)⇌H+(aq)+A−(aq)
K_(a1) = (["H"^(+)]_1["A"^(-)])/(["HA"]) = (["H"^(+)]_1alpha_1C_1)/((1 - alpha_1)C_1)Ka1=[H+]1[A−][HA]=[H+]1α1C1(1−α1)C1
Although we know that
Since we assume
K_(a1) ~~ (["H"^(+)]_1alpha_1C_1)/(C_1) = alpha_1["H"^(+)]_1Ka1≈[H+]1α1C1C1=α1[H+]1
So,
["H"^(+)]_1 ~~ K_(a1)/alpha_1[H+]1≈Ka1α1
The second acid, say
"BH"^(+)(aq) rightleftharpoons "B"(aq) + "H"^(+)(aq)BH+(aq)⇌B(aq)+H+(aq)
And the
K_(a2) = (["B"]["H"^(+)])/(["BH"^(+)]) = (["H"^(+)]alpha_2C_2)/((1 - alpha_2)C_2)Ka2=[B][H+][BH+]=[H+]α2C2(1−α2)C2
And since we also have
K_(a2) ~~ alpha_2["H"^(+)]Ka2≈α2[H+]
["H"^(+)] ~~ K_(a2)/alpha_2[H+]≈Ka2α2
with
alpha_2C_2 = ["H"^(+)]_2 = K_(a2)/alpha_2 - alpha_1C_1α2C2=[H+]2=Ka2α2−α1C1 .
So, one form of this is
["H"^(+)] = ["H"^(+)]_1 + ["H"^(+)]_2[H+]=[H+]1+[H+]2
= alpha_1C_1 + alpha_2C_2=α1C1+α2C2
But we have built into
color(red)(["H"^(+)] < (K_(a1))/alpha_1 + K_(a2)/alpha_2)[H+]<Ka1α1+Ka2α2
It would be convenient to determine
K_(a2)/alpha_2 = alpha_1C_1 + alpha_2C_2Ka2α2=α1C1+α2C2
0 = C_2alpha_2^2 + alpha_1C_1alpha_2 - K_(a2)0=C2α22+α1C1α2−Ka2
This becomes a quadratic equation. If you wish to see it,
color(green)(alpha_2) = (-(alpha_1C_1) pm sqrt(alpha_1^2C_1^2 - 4C_2(-K_(a2))))/(2C_2)α2=−(α1C1)±√α21C21−4C2(−Ka2)2C2
= color(green)((-(alpha_1C_1) pm sqrt(alpha_1^2C_1^2 + 4C_2K_(a2)))/(2C_2))=−(α1C1)±√α21C21+4C2Ka22C2
And so,
["H"^(+)] = alpha_1C_1 + (- (alpha_1C_1)/(2C_2) pm sqrt(alpha_1^2C_1^2 + 4C_2K_(a2))/(2C_2))C_2[H+]=α1C1+⎛⎜ ⎜⎝−α1C12C2±√α21C21+4C2Ka22C2⎞⎟ ⎟⎠C2
= 1/2 alpha_1C_1 pm sqrt(((alpha_1C_1)/(2))^2 + K_(a2)C_2)=12α1C1±√(α1C12)2+Ka2C2
And lastly, it would be convenient to know this in terms of
Since
alpha_1 = sqrt(K_(a1)/C_1)α1=√Ka1C1
Therefore:
color(blue)(["H"^(+)]) = 1/2 sqrt(K_(a1)C_1) pm sqrt(((C_1)/(2))^2K_(a1)/C_1 + K_(a2)C_2)[H+]=12√Ka1C1±√(C12)2Ka1C1+Ka2C2
= 1/2 sqrt(K_(a1)C_1) pm sqrt(1/4K_(a1)C_1 + K_(a2)C_2)=12√Ka1C1±√14Ka1C1+Ka2C2
= color(blue)(1/2 (sqrt(K_(a1)C_1) pm sqrt(K_(a1)C_1 + 4K_(a2)C_2)))=12(√Ka1C1±√Ka1C1+4Ka2C2)
TESTING ON ACTUAL PROBLEM
And of course, we should try this on an actual problem.
Consider acetic acid (
"HCHO"_2(aq) rightleftharpoons "H"^(+)(aq) + "CHO"_2^(-)(aq)HCHO2(aq)⇌H+(aq)+CHO−2(aq)
1.8 xx 10^(-4) = x^2/(0.50 - x) ~~ x^2/0.501.8×10−4=x20.50−x≈x20.50
So,
["H"^(+)]_1 ~~ sqrt(1.8 xx 10^(-4) cdot 0.50) = "0.00949 M"[H+]1≈√1.8×10−4⋅0.50=0.00949 M
and
alpha_1 ~~ x/(["HCHO"_2]) = 0.019α1≈x[HCHO2]=0.019
Let's see if we get the same
1.8 xx 10^(-4) stackrel(?)(=) (alpha_1C_1)^2/((1 - alpha_1)C_1)1.8×10−4?=(α1C1)2(1−α1)C1
= (0.019 cdot 0.50)^2/((1 - 0.019)cdot0.50) ~~ 1.8 xx 10^(-4) color(blue)(sqrt"")=(0.019⋅0.50)2(1−0.019)⋅0.50≈1.8×10−4√
Next, add in acetic acid.
"HC"_2"H"_3"O"_2(aq) rightleftharpoons "H"^(+)(aq) + "C"_2"H"_3"O"_2^(-)(aq)HC2H3O2(aq)⇌H+(aq)+C2H3O−2(aq)
1.8 xx 10^(-5) = ((["H"^(+)]_1 + x)(x))/(2.00 - x) ~~ (["H"^(+)]_1 + x)x/21.8×10−5=([H+]1+x)(x)2.00−x≈([H+]1+x)x2
~~ ["H"^(+)]_1x/2 + x^2/2≈[H+]1x2+x22
The quadratic equation solves to be
x = ["C"_2"H"_3"O"_2^(-)] = "0.00291 M"x=[C2H3O−2]=0.00291 M ,which is also the
"H"^(+)H+ contributed by the second acid.
And so, the total
color(green)(["H"^(+)]) = "0.00949 M" + "0.00291 M" = color(green)ul("0.0124 M")
This acid's percent dissociation at this concentration is
alpha_2 = x/(["HC"_2"H"_3"O"_2]) = "0.00291 M"/"2.00 M" = 0.00145 .
So from the first form of the derived equation,
color(green)(["H"^(+)] = alpha_1C_1 + alpha_2C_2)
= 0.019 cdot 0.50 + 0.00145 cdot 2.00 = color(green)ul("0.0124 M") color(blue)(sqrt"")
Now to check the general formula we derived above.
color(green)(["H"^(+)]) stackrel(?)(=) 1/2 (sqrt(K_(a1)C_1) pm sqrt(K_(a1)C_1 + 4K_(a2)C_2))
= 1/2 (sqrt(1.8 xx 10^(-4) cdot 0.50) pm sqrt(1.8 xx 10^(-4) cdot 0.50 + 4 cdot 1.8 xx 10^(-5) cdot 2.00))
= 1/2(sqrt(9.00 xx 10^(-5)) pm sqrt(9.00 xx 10^(-5) + 1.44 xx 10^(-4)))
= color(green)ul("0.0124 M") color(blue)(sqrt"")