Is f(x)=(1-e^(2x))/(2x-4)f(x)=1e2x2x4 increasing or decreasing at x=-1x=1?

1 Answer
Jan 5, 2016

Increasing.

Explanation:

Find the sign of the derivative at x=-1x=1.

To find f'(x), use the quotient rule.

f'(x)=((2x-4)d/dx(1-e^(2x))-(1-e^(2x))d/dx(2x-4))/(2x-4)^2

The derivative of each part:

The first requires the chain rule:d/dx(e^u)=e^u*u'

d/dx(1-e^(2x))=-2e^(2x)

d/dx(2x-4)=2

Thus,

f'(x)=((2x-4)(-2e^(2x))-2(1-e^(2x)))/(2x-4)^2

f'(x)=(-4xe^(2x)+10e^(2x)+2)/(2x-4)^2

Find f'(-1) If it's greater than 0, the function is increasing at that point. If it's less than 0, the function is decreasing at that point.

f'(-1)=(-4(-2)e^-2+10e^-2+2)/(-2-4)^2=(18/e^2+2)/36

Since this is >0, the function is increasing when x=-1.

graph{(1-e^(2x))/(2x-4) [-5.93, 6.56, -2.596, 3.647]}