Is f(x)=1-x-e^(-3x)/xf(x)=1xe3xx concave or convex at x=4x=4?

1 Answer
Feb 5, 2018

Let's take some derivatives!

Explanation:

For f(x) = 1 - x - e^(-3x)/xf(x)=1xe3xx, we have
f'(x) = - 1 - (-3xe^(-3x)-e^(-3x))/x^2
This simplifies (sort of) to
f'(x) = - 1 + e^(-3x)(3x+1)/x^2
Therefore
f''(x) = e^(-3x)(-3x-2)/x^3-3e^(-3x)(3x+1)/x^2
= e^(-3x)((-3x-2)/x^3-3(3x+1)/x^2)
= e^(-3x)((-3x-2)/x^3+(-9x-3)/x^2)
= e^(-3x)((-3x-2)/x^3+(-9x^2-3x)/x^3)
= e^(-3x)((-9x^2-6x-2)/x^3)

Now let x = 4.

f''(4) = e^(-12)((-9(16)^2-6(4)-2)/4^3)

Observe that the exponential is always positive. The numerator of the fraction is negative for all positive values of x. The denominator is positive for positive values of x.

Therefore f''(4) < 0.

Draw your conclusion about concavity.