Is f(x)=1-xe^(-3x)f(x)=1xe3x concave or convex at x=-2x=2?

1 Answer

function is convex at x=-2x=2

Explanation:

Given function:

f(x)=1-xe^{-3x}f(x)=1xe3x

f'(x)=-x(-3e^{-3x})-e^{-3x}(1)

f'(x)=e^{-3x}(3x-1)

f''(x)=e^{-3x}(3)+(3x-1)(-3e^{-3x})

f''(x)=e^{-3x}(6-9x)

f''(-2)=e^{6}(6-9(-2))

=24e^{6}

Since f(-2)>0 hence the given function is convex at x=-2