Is #f(x)=(-3x^2-x+2)/(x^2+x)# increasing or decreasing at #x=1#?

1 Answer
Apr 26, 2016

decreasing at x = 1

Explanation:

To determine if a function is increasing/decreasing at x = a , we evaluate f'(a)

• If f'(a) > 0 , then f(x) is increasing at x = a

• If f'(a) < 0 , then f(x) is decreasing at x = a

differentiate f(x) using the #color(blue)" quotient rule " #

If f(x)#=g(x)/(h(x)) "then" f'(x) = (h(x).g'(x) - g(x).h'(x)) /(h(x))^2#
#"----------------------------------------------------------------"#

g(x)#= -3x^2-x+2 rArr g'(x) = -6x - 1 #

and h(x) #=x^2 + x rArr h'(x) = 2x + 1 #
#"---------------------------------------------------------------"#
Substitute these values into f'(x)

# f'(x) = ((x^2+x)(-6x-1) - (-3x^2-x+2)(2x+1))/(x^2+x)^2 #

and f'(1) #= (2.(-7) - (-2).(3))/2^2 = (-8)/4 = -2#

Since f'(1) < 0 , then f(x) is decreasing at x = 1
graph{(-3x^2-x+2)/(x^2+x) [-10, 10, -5, 5]}