Is f(x)=(x^2-e^x)/(x-2) increasing or decreasing at x=-1?

1 Answer
Dec 11, 2015

Increasing.

Explanation:

If f'(-1)<0, then f(x) is decreasing at x=-1.
If f'(-1)>0, then f(x) is increasing at x=-1.

Find the first derivative.

Use the quotient rule.

f'(x)=((x-2)d/dx[x^2-e^x]-(x^2-e^x)d/dx[x-2])/(x-2)^2

Find each derivative separately.

d/dx[x^2-e^x]=2x-e^x

d/dx[x-2]=1

Plug them back in.

f'(x)=((x-2)(2x-e^x)-(x^2-e^x))/(x-2)^2

f'(x)=(2x^2-4x-xe^x+2e^x-x^2+e^x)/(x-2)^2

f'(x)=(x^2-xe^x+3e^x-4x)/(x-2)^2

Find f'(-1).

f'(-1)=((-1)^2-(-1)e^(-1)+3e^(-1)-4(-1))/((-1)-2)^2

f'(-1)=(5+4/e)/9

We could determine the exact value of this number, but it's clear that it will be positive. Because of this, we know that f(x) is increasing when x=-1.