Is #f(x)=(x^2-e^x)/(x-2)# increasing or decreasing at #x=-1#?

1 Answer
Dec 11, 2015

Increasing.

Explanation:

If #f'(-1)<0#, then #f(x)# is decreasing at #x=-1#.
If #f'(-1)>0#, then #f(x)# is increasing at #x=-1#.

Find the first derivative.

Use the quotient rule.

#f'(x)=((x-2)d/dx[x^2-e^x]-(x^2-e^x)d/dx[x-2])/(x-2)^2#

Find each derivative separately.

#d/dx[x^2-e^x]=2x-e^x#

#d/dx[x-2]=1#

Plug them back in.

#f'(x)=((x-2)(2x-e^x)-(x^2-e^x))/(x-2)^2#

#f'(x)=(2x^2-4x-xe^x+2e^x-x^2+e^x)/(x-2)^2#

#f'(x)=(x^2-xe^x+3e^x-4x)/(x-2)^2#

Find #f'(-1)#.

#f'(-1)=((-1)^2-(-1)e^(-1)+3e^(-1)-4(-1))/((-1)-2)^2#

#f'(-1)=(5+4/e)/9#

We could determine the exact value of this number, but it's clear that it will be positive. Because of this, we know that #f(x)# is increasing when #x=-1#.