Is #f(x)=(-x^3-x^2-x+2)/(x^2+3x)# increasing or decreasing at #x=1#?
1 Answer
f(x) is decreasing at x = 1
Explanation:
To find if the function is increasing / decreasing at x = 1
Require to check the value of f'(x) at x = 1.
• If f')x) > 0 then increasing
• If f'(x) < 0 then decreasing
differentiate using
# color(blue)(" quotient rule ") #
# f'(x) =( (x^2+3x) d/dx (-x^3-x^2-x+2) - (-x^3-x^2-x+2) d/dx(x^2+3x))/(x^2+3x)^2 #
#=( -3x^4-11x^3-7x^2-3x+2x^4+5x^3+5x^2-4x-6)/(x^2+3x)^2 #
# =( -x^4-6x^3-2x^2-7x-6)/(x^2+3x)^2#
# f'(1) = (-1-6-2-7-6)/(1+3)^2 = -22/16 = -11/8 # now f'(1) < 0 hence f(x) is decreasing at x = 1
The graph of f(x) illustrates decreasing at x = 1
graph{(-x3-x^2-x+2)/(x^2+3x) [-10, 10, -5, 5]}