Is f(x)=(x-3)(x+2)(x-4)^2f(x)=(x3)(x+2)(x4)2 concave or convex at x=-1x=1?

1 Answer
Mar 7, 2017

The function is convex at x=-1x=1

Explanation:

We need

(uvw)'=u'vw+v'uw+w'uv

We must calculate the first and second derivatives

f(x)=(x-3)(x+2)(x-4)^2

f'(x)=(x+2)(x-4)^2+(x-3)(x-4)^2+2(x-3)(x+2)(x-4)

=(x-4){(x+2)(x-4)+(x-3)(x-4)+2(x-3)(x+2)}

=(x-4){x^2-2x-8+x^2-7x+12+2x^2-2x-12}

=(x-4)(4x^2-11x-8)

f''(x)=(4x^2-11x-8)+(x-4)(8x-11)

=4x^2-11x-8+8x^2-43x+44

=12x^2-54x+36

Therefore,

f''(-1)=12+54+36=102

As, f''(-1)>0, we conclude that the function is convex