Is f(x)=x^3-x+e^(x-x^2) f(x)=x3x+exx2 concave or convex at x=1 x=1?

1 Answer
Apr 26, 2018

It is convex.

Explanation:

The function will be convex if the second derivative is positive, and concave if it is negative.
Weisstein, Eric W. "Second Derivative Test." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SecondDerivativeTest.html

The first derivative is:
3x^2 + (-2x +1)e^(-x^2+x)-13x2+(2x+1)ex2+x1

The second derivative is:
6x + (2x -1 )^2 e^(-x^2+x) -2e^(-x^2+x)6x+(2x1)2ex2+x2ex2+x

Calculation detail steps here:
http://calculus-calculator.com/derivative/

At x = 1x=1:
6 + 2e^(2) = 20.786+2e2=20.78 positive value