Is f(x)=x^3-xe^(x-x^2) f(x)=x3xexx2 concave or convex at x=1 x=1?

1 Answer
Nov 13, 2016

f(x)f(x) is concave at x=1x=1.

Explanation:

To find intervals of convex and concave, we have to find the 2nd derivative.

f(x)=x^3-xe^(-x^2+x)f(x)=x3xex2+x

f'(x)=3x^2-[(x)(-2x+1)(e^(-x^2+x))+(e^(-x^2+x))]
f'(x)=3x^2-(x)(-2x+1)(e^(-x^2+x))-(e^(-x^2+x))
f'(x)=3x^2-(-2x^2+x)(e^(-x^2+x))-(e^(-x^2+x))

f''(x)=6x-[(-2x^2+x)(-2x+1)(e^(-x^2+x))+(-4x+1)(e^(-x^2+x))]-(-2x+1)(e^(-x^2+x))

f''(x)=6x-(-2x^2+x)(-2x+1)(e^(-x^2+x))-(-4x+1)(e^(-x^2+x))-(-2x+1)(e^(-x^2+x))

It's hard to find zeros of the ugly equation of f''(x), so I graphed it:

graph{6x-(-2x^2+x)(-2x+1)(e^(-x^2+x))-(-4x+1)(e^(-x^2+x))-(-2x+1)(e^(-x^2+x)) [-10, 10, -5, 5]}

This shows that f(x) is concave from approx(.186,oo), and f(x) is convex from approx(-oo,.186)

Therefore, f(x) is concave at x=1.