Is f(x)=-xe^x+x^3-x^2 concave or convex at x=-2?

1 Answer
Jan 15, 2017

Since f''(-2)<0, the function is concave

Explanation:

First, you would calculate the first and the second derivatives:

f'(x)=(-1*e^x+(-x)*e^x)+3x^2-2x

=(-e^x-xe^x)+3x^2-2x

f''(x)=(-e^x-e^x-xe^x)+6x-2

=-2e^x-xe^x+6x-2

Then you would calculate

f''(-2)=-2e^(-2)-(-2)e^(-2)+6(-2)-2

=cancel(-2e^-2)cancel(+2e^-2)-12-2

-14<0

Since f''(-2)<0, the function is concave
graph{-xe^x+x3-x^2 [-10.035, 9.965, -7.32, 2.68]}