Is the function f(x)= -4x^2 + 4xf(x)=−4x2+4x even, odd or neither?
1 Answer
Neither
Explanation:
The quick way to spot whether a polynomial function in
By definition:
f(x)f(x) is odd iff(-x) = -f(x)f(−x)=−f(x) for allxx in the domain.
f(x)f(x) is even iff(-x) = f(x)f(−x)=f(x) for allxx in the domain.
In our case, we find:
f(-1) = -4-4 = -8f(−1)=−4−4=−8
f(1) = -4+4 = 0f(1)=−4+4=0
So neither condition holds.
Given any function
f_e(x) = (f(x) + f(-x))/2fe(x)=f(x)+f(−x)2
f_o(x) = (f(x) - f(-x))/2fo(x)=f(x)−f(−x)2
In our case we find