Is there an error in this question: Show that ((del^2Q)/(delbeta^2))_V = bar(E^2) - barE^2(∂2Q∂β2)V=¯¯¯¯¯E2−¯¯¯E2 (the variance of the energy)? betaβ is only a function of temperature TT, not a function of volume VV. EE is a function of only VV.
Relevant expressions:
barE = sum_(i=1)^(N) p_iE_i¯¯¯E=N∑i=1piEi , the ensemble average energy
bar(E^2) = sum_(i=1)^(N) p_iE_i^2¯¯¯¯¯E2=N∑i=1piE2i , the ensemble average squared energy
barE^2 = (sum_(i=1)^(N) p_iE_i)^2¯¯¯E2=(N∑i=1piEi)2 , the square of the ensemble average energy
p_i = (e^(-betaE_i))/Qpi=e−βEiQ , the distribution law for the canonical ensemble
Q = sum_(i=1)^(N) e^(-betaE_i)Q=N∑i=1e−βEi , the canonical partition function
Relevant expressions:
1 Answer
My professor answered back and said that there was. It was supposed to be
bar(E^2) - barE^2¯¯¯¯¯E2−¯¯¯E2
= sum_(i=1)^(N)p_iE_i^2 - (sum_(i=1)^(N)p_iE_i)^2=N∑i=1piE2i−(N∑i=1piEi)2
= 1/Qsum_(i=1)^(N)(E_i^2e^(-betaE_i)) - (1/Qsum_(i=1)^(N)E_ie^(-betaE_i))^2=1QN∑i=1(E2ie−βEi)−(1QN∑i=1Eie−βEi)2
Working backwards from the chain rule, we get:
= 1/Q((del^2Q)/(delbeta^2))_V - (1/Q((delQ)/(delbeta))_V)^2=1Q(∂2Q∂β2)V−(1Q(∂Q∂β)V)2
= 1/Q((del^2Q)/(delbeta^2))_V - 1/Q^2((delQ)/(delbeta))_V^2=1Q(∂2Q∂β2)V−1Q2(∂Q∂β)2V
Working backwards from the product rule, it is difficult but we recognize that
(del)/(delbeta)[1/Q((delQ)/(delbeta))_V]∂∂β[1Q(∂Q∂β)V]
= 1/Q((del^2Q)/(delbeta^2))_V + ((delQ)/(delbeta))_V(-1/Q^2)((delQ)/(delbeta))_V=1Q(∂2Q∂β2)V+(∂Q∂β)V(−1Q2)(∂Q∂β)V
= 1/Q((del^2Q)/(delbeta^2))_V -1/Q^2((delQ)/(delbeta))_V^2=1Q(∂2Q∂β2)V−1Q2(∂Q∂β)2V
Hence, what we really have is:
color(blue)(bar(E^2) - barE^2) = 1/Q((del^2Q)/(delbeta^2))_V - 1/Q^2((delQ)/(delbeta))_V^2¯¯¯¯¯E2−¯¯¯E2=1Q(∂2Q∂β2)V−1Q2(∂Q∂β)2V
= (del)/(delbeta)[1/Q((delQ)/(delbeta))_V]=∂∂β[1Q(∂Q∂β)V]
= (del)/(delbeta)[((dellnQ)/(delbeta))_V]=∂∂β[(∂lnQ∂β)V]
= color(blue)(((del^2lnQ)/(delbeta^2))_V)=(∂2lnQ∂β2)V