Is there an error in this question: Show that ((del^2Q)/(delbeta^2))_V = bar(E^2) - barE^2(2Qβ2)V=¯¯¯¯¯E2¯¯¯E2 (the variance of the energy)? betaβ is only a function of temperature TT, not a function of volume VV. EE is a function of only VV.

Relevant expressions:

barE = sum_(i=1)^(N) p_iE_i¯¯¯E=Ni=1piEi, the ensemble average energy

bar(E^2) = sum_(i=1)^(N) p_iE_i^2¯¯¯¯¯E2=Ni=1piE2i, the ensemble average squared energy

barE^2 = (sum_(i=1)^(N) p_iE_i)^2¯¯¯E2=(Ni=1piEi)2, the square of the ensemble average energy

p_i = (e^(-betaE_i))/Qpi=eβEiQ, the distribution law for the canonical ensemble

Q = sum_(i=1)^(N) e^(-betaE_i)Q=Ni=1eβEi, the canonical partition function

1 Answer
Apr 17, 2017

My professor answered back and said that there was. It was supposed to be ((del^2lnQ)/(delbeta^2))_V(2lnQβ2)V. Here is the solution...

bar(E^2) - barE^2¯¯¯¯¯E2¯¯¯E2

= sum_(i=1)^(N)p_iE_i^2 - (sum_(i=1)^(N)p_iE_i)^2=Ni=1piE2i(Ni=1piEi)2

= 1/Qsum_(i=1)^(N)(E_i^2e^(-betaE_i)) - (1/Qsum_(i=1)^(N)E_ie^(-betaE_i))^2=1QNi=1(E2ieβEi)(1QNi=1EieβEi)2

Working backwards from the chain rule, we get:

= 1/Q((del^2Q)/(delbeta^2))_V - (1/Q((delQ)/(delbeta))_V)^2=1Q(2Qβ2)V(1Q(Qβ)V)2

= 1/Q((del^2Q)/(delbeta^2))_V - 1/Q^2((delQ)/(delbeta))_V^2=1Q(2Qβ2)V1Q2(Qβ)2V

Working backwards from the product rule, it is difficult but we recognize that

(del)/(delbeta)[1/Q((delQ)/(delbeta))_V]β[1Q(Qβ)V]

= 1/Q((del^2Q)/(delbeta^2))_V + ((delQ)/(delbeta))_V(-1/Q^2)((delQ)/(delbeta))_V=1Q(2Qβ2)V+(Qβ)V(1Q2)(Qβ)V

= 1/Q((del^2Q)/(delbeta^2))_V -1/Q^2((delQ)/(delbeta))_V^2=1Q(2Qβ2)V1Q2(Qβ)2V

Hence, what we really have is:

color(blue)(bar(E^2) - barE^2) = 1/Q((del^2Q)/(delbeta^2))_V - 1/Q^2((delQ)/(delbeta))_V^2¯¯¯¯¯E2¯¯¯E2=1Q(2Qβ2)V1Q2(Qβ)2V

= (del)/(delbeta)[1/Q((delQ)/(delbeta))_V]=β[1Q(Qβ)V]

= (del)/(delbeta)[((dellnQ)/(delbeta))_V]=β[(lnQβ)V]

= color(blue)(((del^2lnQ)/(delbeta^2))_V)=(2lnQβ2)V