Let A=((0,1),(0,1)). Let T linier operator toR^(2x2), and T(X)=AX-XA, AAXinR^(2x2). Determine rank(T) ?
1 Answer
We have:
bb(A) = ( (0, 1), (0, 1) ) \ \ \ ; and;\ \ ul(bb(T))(bb(X)) = bb(AX) - bb(XA) \ \ AA bb(X) in RR^(2xx2)
Consider a generic element
bb(X) = ( (a_11, a_12), (a_21, a_22) )
Then consider the effect of the linear operator
ul(bb(T))(bb(X)) = bb(AX) - bb(XA)
\ \ \ \ \ \ \ \ \ = ( (0, 1), (0, 1) )( (a_11, a_12), (a_21, a_22) ) - ( (a_11, a_12), (a_21, a_22) )( (0, 1), (0, 1) )
\ \ \ \ \ \ \ \ \ = ( (a_21, a_22), (a_21, a_22) ) - ( (0, a_11+a_12), (0, a_21+a_22) )
\ \ \ \ \ \ \ \ \ = ( (a_21, a_22-a_11-a_12), (a_21, a_22-a_21-a_22) )
\ \ \ \ \ \ \ \ \ = ( (a_21, a_22-a_11-a_12), (a_21, -a_21) )
The vectors:
( (a_21), (a_21) ) \ \ \ ; and;( (a_22-a_11-a_12), (-a_21) )
Are linearly independent, and therefore:
rank(ul(bb(T))) = 2
even though