Let A=((0,1),(0,1)). Let T linier operator toR^(2x2), and T(X)=AX-XA, AAXinR^(2x2). Determine rank(T) ?

1 Answer
Sep 28, 2017

We have:

bb(A) = ( (0, 1), (0, 1) ) \ \ \ ; and; \ \ ul(bb(T))(bb(X)) = bb(AX) - bb(XA) \ \ AA bb(X) in RR^(2xx2)

Consider a generic element bb(X) in RR^(2xx2), having terms:

bb(X) = ( (a_11, a_12), (a_21, a_22) )

Then consider the effect of the linear operator ul(bb(T)) on the matrix bb(X);

ul(bb(T))(bb(X)) = bb(AX) - bb(XA)

\ \ \ \ \ \ \ \ \ = ( (0, 1), (0, 1) )( (a_11, a_12), (a_21, a_22) ) - ( (a_11, a_12), (a_21, a_22) )( (0, 1), (0, 1) )

\ \ \ \ \ \ \ \ \ = ( (a_21, a_22), (a_21, a_22) ) - ( (0, a_11+a_12), (0, a_21+a_22) )

\ \ \ \ \ \ \ \ \ = ( (a_21, a_22-a_11-a_12), (a_21, a_22-a_21-a_22) )

\ \ \ \ \ \ \ \ \ = ( (a_21, a_22-a_11-a_12), (a_21, -a_21) )

The vectors:

( (a_21), (a_21) ) \ \ \ ; and; ( (a_22-a_11-a_12), (-a_21) )

Are linearly independent, and therefore:

rank(ul(bb(T))) = 2

even though rank(bb(A))=1