Let ff such that f:RR->RR and for some positive a the equation f(x+a)=1/2+sqrt(f(x)+f(x)^2) holds for all x. Prove that the function f(x) is periodic?

3 Answers
Oct 23, 2016

If f is periodic, with period a,

f(x+a)=f(x)=1/2+sqrt(f(x)+f(x)^2

Rationalizing,

f(x)=1/4, a constant, and the period a becomes the distance

between two neighboring points.

Oct 23, 2016

There is no such function f

Explanation:

The conditions cannot be satisfied, so there is no such function f.

Given:

f(x+a) = 1/2 + sqrt(f(x)+f(x)^2)

Note first that sqrt(...) >= 0 and hence f(x) >= 1/2 for all x in RR

Given that f(x) > 0, we have f(x) + f(x)^2 > f(x)^2 and hence:

sqrt(f(x) + f(x)^2) > sqrt(f(x)^2) = f(x)

So:

f(x+a) > f(x) + 1/2

Hence:

f(x-a) < f(x) - 1/2

So if n > ceil(2(f(0) - 1/2)) then:

f(-na) < f(0) - n/2 < f(0) - (f(0) - 1/2) = 1/2

-- contradiction.

Oct 23, 2016

Making x = x+a

f(x+2a)=1/2+sqrt(f(x+a)-f(x+a)^2)=
=1/2+sqrt(1/2+sqrt(f(x)-f(x)^2)-(1/2+sqrt(f(x)-f(x)^2))^2)=
=1/2+sqrt(1/2+sqrt(f(x)-f(x)^2)-1/4-f(x)+f(x)^2-sqrt(f(x)-f(x)^2))=
=1/2+sqrt(1/4-f(x)+f(x)^2)=
=1/2+sqrt((1/2-f(x))^2)=
=1/2+abs(1/2-f(x))

so we can observe that

f(x) ge 1/2 so

abs(1/2-f(x))=f(x)-1/2 and finally

f(x+2a)=f(x) so f(x) is periodic with period 2a