Let P_2P2 is real polynomial space with the highest degree is 2. Specify the x^2"-coordinate "x2-coordinate of the base " "{x^2+x,x+1,x^2+1}" in "P_2 {x2+x,x+1,x2+1} in P2 ?

2 Answers
Apr 9, 2017

(1/2,-1/2,1/2)(12,12,12)

Explanation:

I think you are asking for the coordinates of x^2x2 using the given base.

We find:

1/2(x^2+x)-1/2(x+1)+1/2(x^2+1) = x^212(x2+x)12(x+1)+12(x2+1)=x2

So the coordinates are: (1/2, -1/2, 1/2)(12,12,12)

Apr 9, 2017

x^2 = 1/2(x^2+x)-1/2(x+1)+1/2(x^2+1)x2=12(x2+x)12(x+1)+12(x2+1)

Explanation:

We have that

x^2=alpha(x^2+x)+beta(x+1)+gamma(x^2+1)x2=α(x2+x)+β(x+1)+γ(x2+1)

so

x^2=(alpha+gamma)x^2+(alpha+beta)x+(beta+gamma)x2=(α+γ)x2+(α+β)x+(β+γ)

and we need

{(alpha+gamma=1),(alpha+beta=0),(beta+gamma=0):}

solving we have

alpha=1/2,beta=-1/2,gamma=1/2 and finally

x^2 = 1/2(x^2+x)-1/2(x+1)+1/2(x^2+1)