Let #siny + cosx = 1# then find #(d^2y)/(dx^2)#?
1 Answer
May 30, 2018
# (d^2y)/(dx^2) = siny/cosy \ sin^2x/cos^2y + cosx /cosy #
Explanation:
We have:
# siny+cosx=1 #
If we differentiate (implicitly) wrt
# cosy \ dy/dx -sinx = 0 # .... [A]
If we differentiate (implicitly) wrt
# (cosy) \ (d^2y)/(dx^2) -(siny \ dy/dx) \ dy/dx - cosx = 0 #
# :. (d^2y)/(dx^2) -siny/cosy \ (dy/dx)^2 - cosx/cosy = 0 #
And, from [A] we get
# (d^2y)/(dx^2) -siny/cosy \ (sinx/cosy)^2 - cosx /cosy= 0 #
# :. (d^2y)/(dx^2) = siny/cosy \ sin^2x/cos^2y + cosx /cosy #