Let siny + cosx = 1siny+cosx=1 then find (d^2y)/(dx^2)d2ydx2?

1 Answer
May 30, 2018

(d^2y)/(dx^2) = siny/cosy \ sin^2x/cos^2y + cosx /cosy

Explanation:

We have:

siny+cosx=1

If we differentiate (implicitly) wrt x we get:

cosy \ dy/dx -sinx = 0 .... [A]

If we differentiate (implicitly) wrt x again whilst applying the product rule we get:

(cosy) \ (d^2y)/(dx^2) -(siny \ dy/dx) \ dy/dx - cosx = 0

:. (d^2y)/(dx^2) -siny/cosy \ (dy/dx)^2 - cosx/cosy = 0

And, from [A] we get dy/dx = sinx/cosy, so substituting this result in the above we find that:

(d^2y)/(dx^2) -siny/cosy \ (sinx/cosy)^2 - cosx /cosy= 0

:. (d^2y)/(dx^2) = siny/cosy \ sin^2x/cos^2y + cosx /cosy