Let siny + cosx = 1siny+cosx=1 then find (d^2y)/(dx^2)d2ydx2?
1 Answer
May 30, 2018
(d^2y)/(dx^2) = siny/cosy \ sin^2x/cos^2y + cosx /cosy
Explanation:
We have:
siny+cosx=1
If we differentiate (implicitly) wrt
cosy \ dy/dx -sinx = 0 .... [A]
If we differentiate (implicitly) wrt
(cosy) \ (d^2y)/(dx^2) -(siny \ dy/dx) \ dy/dx - cosx = 0
:. (d^2y)/(dx^2) -siny/cosy \ (dy/dx)^2 - cosx/cosy = 0
And, from [A] we get
(d^2y)/(dx^2) -siny/cosy \ (sinx/cosy)^2 - cosx /cosy= 0
:. (d^2y)/(dx^2) = siny/cosy \ sin^2x/cos^2y + cosx /cosy