\lim _{n\to \infty }\sum _{i=1}^n\frac{3}{n}[(\frac{i}{n})^2+1].........??

2 Answers
Feb 11, 2018

4

Explanation:

= lim_{n->oo} (3/n^3) [ sum_{i=1}^{i=n} i^2 ] + (3/n) [ sum_{i=1}^{i=n} 1 ]
"(Faulhaber's formula)"
= lim_{n->oo} (3/n^3) [ (n(n+1)(2n+1))/6 ] + (3/n) [ n ]
= lim_{n->oo} (3/n^3) [ n^3/3 + n^2/2 + n/6 ] + (3/n) [ n ]
= lim_{n->oo} [1 + ((3/2))/n + ((1/2))/n^2 + 3]
= lim_{n->oo} [ 1 + 0 + 0 + 3 ]
= 4

Feb 11, 2018

4.

Explanation:

Here is another way to solve the Problem :

Recall that, int_0^1f(x)dx=lim_(n to oo)sum_(i=1)^n1/nf(i/n)...(star).

:." The Reqd. Lim.="lim_(n to oo)sum_(i=1)^n3/n{(i/n)^2+1},

=3[lim_(n to oo)sum_(i=1)^n1/n{(i/n)^2+1}],

=3int_0^1{(x)^2+1}dx............[because, (star)],

=3[x^3/3+x]_0^1,

=[x^3+3x]_0^1,

=1^3+3xx1-(0^3+3xx0),

rArr " The Reqd. Lim.="4.