lim_(x->0)tan(x)/(x+sin(x))?

2 Answers
Mar 14, 2017

= 1/2

Explanation:

lim_(x->0)tan(x)/(x+sin(x))

Using Taylor Expansions:

=lim_(x->0)(x + x^3/3 + mathcal O x^5)/(x+(x - x^3/(3!) + mathcal O x^5))

=lim_(x->0)(x + x^3/3 + mathcal O x^5)/(2x- x^3/(3!) + mathcal O x^5)

=lim_(x->0)(1 + x^2/3 + mathcal O x^4)/(2- x^2/(3!) + mathcal O x^4)

=1/2

Mar 14, 2017

tanx/(x+sinx) = (sinx/cosx)/(x+sinx)

= sinx/(cosx(x+sinx))

= (sinx/x)/(cosx(1+sinx/x)) for all x != 0

Now use lim_(xrarr0) sinx/x =1 to get

lim_(xrarr0)tanx/(x+sinx) = lim_(xrarr0) (sinx/x)/(cosx(1+sinx/x))

= 1/(x(1+1)) = 1/2