#sqrt((x+a)(x+b))-x = ((sqrt((x+a)(x+b))-x)(sqrt((x+a)(x+b))+x))/(sqrt((x+a)(x+b))+x) #
#sqrt((x+a)(x+b))-x =(x^2+(a+b)x+ab-x^2)/(sqrt((x+a)(x+b))+x) =#
#=(x(a+b+ (ab)/x))/(x(sqrt(1+(a+b)/x+(ab)/x^2)+1)) = (a+b+ (ab)/x)/(sqrt(1+(a+b)/x+(ab)/x^2)+1)#
then
#lim_(x->oo)(sqrt((x+a)(x+b))-x ) = lim_(x->oo)(a+b+ (ab)/x)/(sqrt(1+(a+b)/x+(ab)/x^2)+1)=(a+b)/2#