Limx→∞ ((x^2+5x+3)/x^2+x+3))^x=? Thanks.

1 Answer
Jun 27, 2017

#e^4#

Explanation:

#lim_(xrarroo) ((x^2+5x+3)/(x^2+x+3))^x#

Step 1
Has indeterminate form #1^oo#. Use exponential and logarithmic functions, with l'Hospital's Rule to find the limit.

Step 2
#((x^2+5x+3)/(x^2+x+3))^x = e^(xln((x^2+5x+3)/(x^2+x+3))#

Step 3
The limit of the exponent is:

#lim_(xrarroo)(xln((x^2+5x+3)/(x^2+x+3)))# which has indeterminate form #0*oo#,

Step 4
but we can rewrite it as

#lim_(xrarroo)(ln((x^2+5x+3)/(x^2+x+3)))/(1/x)# which has form #0/0#.

Step 5
Apply l'Hospital:

# = lim_(xrarroo)((x^2+x+3)/(x^2+5x+3)*(-4(x^2+3))/(x^2+x+3)^2)/(-1/x^2)#

Step 6 #" "# Simplify

# = lim_(xrarroo)(x^2/(x^2+5x+3)*(4(x^2+3))/(x^2+x+3))#

Step 7 Evaluate the limit

# = 4#

Step 8 Use continuity of the exponential function to finish.

#lim_(xrarroo)((x^2+5x+3)/(x^2+x+3))^x = lim_(xrarroo) e^(xln((x^2+5x+3)/(x^2+x+3))#

# = e^(lim_(xrarroo) xln((x^2+5x+3)/(x^2+x+3)))#

# = e^4#

So the limit we seek is #e^4#