Limx→∞ ((x^2+5x+3)/x^2+x+3))^x=? Thanks.

1 Answer
Jun 27, 2017

e^4e4

Explanation:

lim_(xrarroo) ((x^2+5x+3)/(x^2+x+3))^x

Step 1
Has indeterminate form 1^oo. Use exponential and logarithmic functions, with l'Hospital's Rule to find the limit.

Step 2
((x^2+5x+3)/(x^2+x+3))^x = e^(xln((x^2+5x+3)/(x^2+x+3))

Step 3
The limit of the exponent is:

lim_(xrarroo)(xln((x^2+5x+3)/(x^2+x+3))) which has indeterminate form 0*oo,

Step 4
but we can rewrite it as

lim_(xrarroo)(ln((x^2+5x+3)/(x^2+x+3)))/(1/x) which has form 0/0.

Step 5
Apply l'Hospital:

= lim_(xrarroo)((x^2+x+3)/(x^2+5x+3)*(-4(x^2+3))/(x^2+x+3)^2)/(-1/x^2)

Step 6 " " Simplify

= lim_(xrarroo)(x^2/(x^2+5x+3)*(4(x^2+3))/(x^2+x+3))

Step 7 Evaluate the limit

= 4

Step 8 Use continuity of the exponential function to finish.

lim_(xrarroo)((x^2+5x+3)/(x^2+x+3))^x = lim_(xrarroo) e^(xln((x^2+5x+3)/(x^2+x+3))

= e^(lim_(xrarroo) xln((x^2+5x+3)/(x^2+x+3)))

= e^4

So the limit we seek is e^4