Limx→∞ ((x^2+5x+3)/x^2+x+3))^x=? Thanks.
1 Answer
Explanation:
Step 1
Has indeterminate form
Step 2
Step 3
The limit of the exponent is:
Step 4
but we can rewrite it as
Step 5
Apply l'Hospital:
# = lim_(xrarroo)((x^2+x+3)/(x^2+5x+3)*(-4(x^2+3))/(x^2+x+3)^2)/(-1/x^2)#
Step 6
# = lim_(xrarroo)(x^2/(x^2+5x+3)*(4(x^2+3))/(x^2+x+3))#
Step 7 Evaluate the limit
# = 4#
Step 8 Use continuity of the exponential function to finish.
# = e^(lim_(xrarroo) xln((x^2+5x+3)/(x^2+x+3)))#
# = e^4#
So the limit we seek is