(p+a/v^2)v=RT,derive the cyclic rule.i.e. show the products of the partial derivatives of p,v&T taken in a order is equal to -1?

1 Answer
Oct 29, 2016

DISCLAIMER: LONG AND MATH-HEAVY ANSWER!

I am pretty sure that you mean to write barV = V/n¯¯¯V=Vn in place of VV. Then, it seems that your equation of state is:

(P + a/(barV^2))barV = RT(P+a¯¯¯V2)¯¯¯V=RT

or

PbarV + a/(barV) = RTP¯¯¯V+a¯¯¯V=RT

THE CYCLIC RULE OF PARTIAL DERIVATIVES

The cyclic rule in general says:

((delx)/(dely))_z((dely)/(delz))_x((delz)/(delx))_y = -1(xy)z(yz)x(zx)y=1.

Since PP is a function of barV¯¯¯V and TT, then if we let x = barVx=¯¯¯V, y = Ty=T, and z = Pz=P:

((delbarV)/(delbarT))_P((delT)/(delP))_(barV)((delP)/(delbarV))_(T) = ?(¯¯¯V¯¯¯T)P(TP)¯¯¯V(P¯¯¯V)T=?

where PP is implicitly a function of TT and barV¯¯¯V.

PROVING THE CYCLIC RULE USING P, V/n, T

To prove the cyclic rule, write the total derivative of P = P(T,barV)P=P(T,¯¯¯V):

bb(dP = ((delP)/(delT))_(barV)dT + ((delP)/(delbarV))_TdbarV)

Now if we divide by dbarV_P (the differential change in molar volume at a constant pressure), we get:

cancel(((delP)/(delbarV))_P)^(0) = ((delP)/(delT))_(barV)((delT)/(delbarV))_P + ((delP)/(delbarV))_Tcancel(((delbarV)/(delbarV))_P)^(1)

0 = ((delP)/(delT))_(barV)((delT)/(delbarV))_P + ((delP)/(delbarV))_T

-((delP)/(delbarV))_T = ((delP)/(delT))_(barV)((delT)/(delbarV))_P

Now if you recall that ((delx)/(dely))_z = 1/(((dely)/(delx))_z), then multiply by the respective reciprocal partial derivatives to get:

-((delbarV)/(delT))_P*((delT)/(delP))_(barV)*((delP)/(delbarV))_T = cancel(((delT)/(delP))_(barV)*((delP)/(delT))_(barV)((delbarV)/(delT))_P*((delT)/(delbarV))_P)^(1)

Thus:

color(blue)(((delbarV)/(delT))_P((delT)/(delP))_(barV)((delP)/(delbarV))_T = -1)

APPLYING THE CYCLIC RULE OF PARTIAL DERIVATIVES

To use the cyclic rule for your equation of state, try rewriting it in terms of P.

P-form of the equation of state

bb(P = (RT)/(barV) - a/(barV^2))

=> color(green)(((delP)/(delbarV))_T = -(RT)/(barV^2) + (2a)/(barV^3))

We can use the reciprocal property of partial derivatives to not have to rewrite this in terms of barV as the dependent variable, which would have proven quite difficult.

=> color(green)(((delT)/(delP))_(barV)) = 1/((delP)/(delT))_(barV)

= 1/(R/(barV)) = color(green)((barV)/R)

T-form of the equation of state

Now to rewrite in terms of T and evaluate the ((delbarV)/(delT))_P derivative:

T = 1/R[PbarV + a/(barV)]

=> color(green)(((delbarV)/(delT))_P) = 1/(((delT)/(delbarV))_P)

= 1/[P/R - a/(RbarV^2)]

= 1/[(PbarV^2 - a)/(RbarV^2)]

= color(green)((RbarV^2)/[PbarV^2 - a])

Showing that these derivatives explicitly reduce to -1

Now we combine these to see if we get -1:

((delbarV)/(delT))_P((delT)/(delP))_(barV)((delP)/(delbarV))_T stackrel(?)(=) -1

= (RbarV^2)/[PbarV^2 - a] (barV)/R(-(RT)/(barV^2) + (2a)/(barV^3))

= (RbarV^2)/[PbarV^2 - a] (-(T)/(barV) + (2a)/(RbarV^2))

= -(TRbarV^2)/(barV(PbarV^2 - a)) + (2aRbarV^2)/(RbarV^2(PbarV^2 - a))

= -(TR^2barV^3)/(RbarV^2(PbarV^2 - a)) + (2aRbarV^2)/(RbarV^2(PbarV^2 - a))

Now make sure that you recall that

-x/(a + b) + y/(a + b) = (-(x - y))/(a + b) = -(x - y)/(a + b).

Thus:

=> (-(TR^2barV^3 - 2aRbarV^2))/(RbarV^2(PbarV^2 - a))

= (-cancel(RbarV^2)(TRbarV - 2a))/(cancel(RbarV^2)(PbarV^2 - a))

= (-(RTbarV - 2a))/(PbarV^2 - a)

Now we substitute RT = PbarV + a/(barV) from the original equation to get:

=> (-((PbarV + a/(barV))barV - 2a))/(PbarV^2 - a)

= -(PbarV^2 + a - 2a)/(PbarV^2 - a)

= -cancel((PbarV^2 - a)/(PbarV^2 - a))

=> color(blue)(-1 = ((delbarV)/(delT))_P((delT)/(delP))_(barV)((delP)/(delbarV))_T)

as expected!