Please solve q 99?

enter image source here

1 Answer
Apr 4, 2018

"(4)"\ 1.07 × 10^4\ "m/s"

Explanation:

Total energy while launching the body

"T.E"_i = -"GMm"/"R"_"e" + 1/2\ "mv"^2

Total energy when it just reaches a height of "10R"_"e"

"T.E"_f = -"GMm"/("R"_"e" + "10R"_"e") = -"GMm"/(11"R"_"e")

By conservation of energy

"T.E"_i = "T.E"_f

-"GMm"/"R"_"e" + 1/2\ "mv"^2 = -"GMm"/("11R"_"e")

Divide both sides by "m"

-"GM"/"R"_"e" + "v"^2/2= -"GM"/("11R"_"e")

"v"^2/2 = "GM"/"R"_"e"[1 - 1/11]

"v" = sqrt("20GM"/"11R"_"e")

Substitute the values

"v" = sqrt((20 × 6.67 × 10^-11\ "Nm"^2"/kg"^2 × 6 × 10^24\ "kg")/(11 × 6.4 × 10^6\ "m")

"v" ≈ 1.07 × 10^4\ "m/s"