Please tell me the formula like given in examples: Reflecting on x-axis, #P(1,2)#------------------#P(1,-2)?#

Reflecting on y-axis

P(1,2)------------------P(?,?)
Rotating 90 degrees in clockwise direction:

P(1,2)------------------P(?,?)
Rotating 90 degrees in anticlockwise direction:

P(1,2)------------------P(?,?)
Rotating 180 degrees in clockwise direction:

P(1,2)------------------P(?,?)
Rotating 180 degrees in anti-clockwise direction:

P(1,2)------------------P(?,?)

1 Answer
Mar 17, 2018

Look at what happens to the #x and y#- coordinates and their signs,

Explanation:

When you have a reflection in the #x#-axis, the #x# values stay the same, but the #y# values change sign.
#P(1,2) rarr P'(1,-2)#

Reflection in the #y#-axis - the #y# values stay the same, and the #x#values change sign.
#P(1,2) rarr P'(-1,2)#

Rotation of #90°# in a clockwise direction:
#x and y# values swop and the new #y# values change sign
#P(1,2) rarr P'(2,-1)#

Rotation of #90°# in an anticlockwise direction:
#x and y# values swop and the new #x# values change sign
#P(1,2) rarr P'(-2,1)#

Rotating #180°# in a clockwise and anticlockwise direction have the same result:
The #x and y# -values change sign.

#P(1,2) rarr P'(-1,-2)#

When you have a reflection in the line #y = x#, the #x and y# values swop..
#P(1,2) rarr P'(2,1)#

When you have a reflection in the line #y = -x#, the #x and y# values swop and both change sign.
#P(1,2) rarr P'(-2,-1)#