Point P(x, y)P(x,y) is on the ellipse with equation 4(x-2)^2+y^2=44(x2)2+y2=4. Find the largest possible value of y/xyx?

3 Answers
Mar 11, 2018

The maximum is y/x = 2sqrt3/3yx=233

Explanation:

Solve 4(x-2)^2+y^2=44(x2)2+y2=4 for the postive value of y:

y = 2sqrt(1-(x-2)^2)y=21(x2)2

Substitute into y/xyx

2sqrt(1-(x-2)^2)/x21(x2)2x

Differentiate with respect to x:

(d(2sqrt(1-(x-2)^2)/x))/dx = (6-4x)/(x^2sqrt(1-(x-2)^2))d(21(x2)2x)dx=64xx21(x2)2

Set the first derivative equal to 0:

(6-4x)/(x^2sqrt(1-(x-2)^2)) = 064xx21(x2)2=0

x = 3/2x=32

y = 2sqrt(1-(3/2-2)^2)y=21(322)2

y = sqrt3y=3

y/x = 2sqrt3/3yx=233

Mar 11, 2018

See below.

Explanation:

Making y/x = lambdayx=λ and substituting into 4(x-2)^2+y^2=44(x2)2+y2=4 we have

4(x-2)^2+lambda^2x^2 = 44(x2)2+λ2x2=4 and then

lambda^2 = (4(1-(x-2)^2))/x^2λ2=4(1(x2)2)x2

The maximum for lambdaλ is the same for lambda^2λ2

The maximum condition is

d/(d lambda) (lambda^2) = -((8 (2 x-3))/x^3)=0ddλ(λ2)=(8(2x3)x3)=0

then

x_0 = 3/2x0=32 with y_0 = pm2sqrt(1-(x_0-2)^2)= pm sqrt3y0=±21(x02)2=±3

are the solution points and then lambda =2/3 sqrt3λ=233

Mar 12, 2018

(2 sqrt3)/3233

Explanation:

Considering

4(x-2)^2+y^2=4 rArr (x-2)^2+1/4 y^2=14(x2)2+y2=4(x2)2+14y2=1

now making the change of variables

u = x-2u=x2
v=y/2v=y2 we get

(x-2)^2+1/4 y^2=1 equiv u^2+v^2=1(x2)2+14y2=1u2+v2=1

now the condition

y/x=lambda equiv (2v)/(u+2) = lambda rArr -1/2 u+1/lambda v=1yx=λ2vu+2=λ12u+1λv=1

so the problem in the new coordinates is.

Determine lambdaλ such that the line

-1/2 u+1/lambda v=112u+1λv=1

is tangent to the circle

u^2+v^2 = 1u2+v2=1

Now given a point p_0p0 pertaining to the circumference we have

p = (u,v)p=(u,v)
p_0 = (cos theta_0,sin theta_0)p0=(cosθ0,sinθ0)
vec n = (cos theta_0, sin theta_0)n=(cosθ0,sinθ0)

and by construction, the line

L->p = p_0 + lambda vec nLp=p0+λn or the non-parametric version

u cos theta_0 + v sin theta_0 = 1ucosθ0+vsinθ0=1

is tangent to the circle.

Now comparing

{(-1/2 u+1/lambda v=1),(u cos theta_0 + v sin theta_0 = 1):}

cos theta_0 = -1/2 rArr theta_0 = (2pi)/3

hence

lambda = 1/(sin theta_0) =1/sin((2pi)/3) = (2 sqrt3)/3