Proof cos(x+y) cos(x-y)= cos2x + cos2y - 1 ? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Shwetank Mauria Mar 13, 2017 cos(x+y)cos(x−y)=12(cos2x+cos2y) not cos2x+cos2y−1 Explanation: cos(x+y)cos(x−y) = (cosxcosy−sinxsiny)(cosxcosy+sinxsiny) = cos2xcos2y−sin2xsin2y = cos2x(1−sin2y)−(1−cos2x)sin2y = cos2x−cos2xsin2y−sin2y+cos2xsin2y = cos2x−sin2y = 12(2cos2x)−12(2sin2y) = 12(1+cos2x)−12(1−cos2y) = 12(cos2x+cos2y) Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 2885 views around the world You can reuse this answer Creative Commons License