Prove it: #sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx))=2/abs(sinx)#?

#sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx))=2/abs(sinx)#

1 Answer
Mar 16, 2017

Proof below
using conjugates and trigonometric version of Pythagorean Theorem.

Explanation:

Part 1
#sqrt((1-cosx)/(1+cosx))#

#color(white)("XXX")=sqrt(1-cosx)/sqrt(1+cosx)#

#color(white)("XXX")=sqrt((1-cosx))/sqrt(1+cosx) * sqrt(1-cosx)/sqrt(1-cosx)#

#color(white)("XXX")=(1-cosx)/sqrt(1-cos^2x)#

Part 2
Similarly
#sqrt((1+cosx)/(1-cosx)#

#color(white)("XXX")=(1+cosx)/sqrt(1-cos^2x)#

Part 3: Combining the terms
#sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx)#

#color(white)("XXX")=(1-cosx)/sqrt(1-cos^2x)+(1+cosx)/sqrt(1-cos^2x)#

#color(white)("XXX")=2/sqrt(1-cos^2x)#

#color(white)("XXXXXX")#and since #sin^2x+cos^2x=1# (based on the Pythagorean Theorem)
#color(white)("XXXXXXXXX")sin^2x=1-cos^2x#

#color(white)("XXXXXXXXX")sqrt(1-cos^2x)=abs(sinx)#

#sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx))=2/sqrt(1-cos^2x)=2/abs(sinx)#