Prove it: tan^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)?
2 Answers
To prove
RHS
Proved
This is one of those proofs that is easier to work from right to left. Start with:
((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)
Multiply numerator and denominator of the embedded fractions by the "conjugates" (e.g.
= (((1+sinx)/((1-sin^2x)(1-sinx)))-((1-sinx)/((1-sin^2x)(1+sinx))))/(((1+cosx)/((1-cos^2x)(1-cosx)))-((1-cosx)/((1-cos^2x)(1+cosx)))
Repeat the previous step to simplify the denominator in the embedded fractions further:
= (((1+sinx)^2/((1-sin^2x)^2))-((1-sinx)^2/((1-sin^2x)^2)))/(((1+cosx)^2/((1-cos^2x)^2))-((1-cosx)^2/((1-cos^2x)^2))
Use the identities
= (((1+sinx)^2/(cos^4x))-((1-sinx)^2/(cos^4x)))/(((1+cosx)^2/(sin^4x))-((1-cosx)^2/(sin^4x))
Combine fractions and flip to multiply the reciprocals:
= (((1+sinx)^2-(1-sinx)^2)/(cos^4x))/(((1+cosx)^2-(1-cosx)^2)/(sin^4x))
= ((1+sinx)^2-(1-sinx)^2)/(cos^4x)*(sin^4x)/((1+cosx)^2-(1-cosx)^2)
Expand the squared terms:
= (cancel(1)+2sinx+cancel(sin^2x)-(cancel(1)-2sinx+cancel(sin^2x)))/(cos^4x)*(sin^4x)/(cancel(1)+2cosx+cancel(cos^2x)-(cancel(1)-2cosx+cancel(cos^2x)))
= (cancel(4)sinx)/(cos^4x)*(sin^4x)/(cancel(4)cosx)
= color(blue)(tan^5x)