Prove it: #tan^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)#?
2 Answers
To prove
RHS
Proved
This is one of those proofs that is easier to work from right to left. Start with:
#((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)#
Multiply numerator and denominator of the embedded fractions by the "conjugates" (e.g.
#= (((1+sinx)/((1-sin^2x)(1-sinx)))-((1-sinx)/((1-sin^2x)(1+sinx))))/(((1+cosx)/((1-cos^2x)(1-cosx)))-((1-cosx)/((1-cos^2x)(1+cosx)))#
Repeat the previous step to simplify the denominator in the embedded fractions further:
#= (((1+sinx)^2/((1-sin^2x)^2))-((1-sinx)^2/((1-sin^2x)^2)))/(((1+cosx)^2/((1-cos^2x)^2))-((1-cosx)^2/((1-cos^2x)^2))#
Use the identities
#= (((1+sinx)^2/(cos^4x))-((1-sinx)^2/(cos^4x)))/(((1+cosx)^2/(sin^4x))-((1-cosx)^2/(sin^4x))#
Combine fractions and flip to multiply the reciprocals:
#= (((1+sinx)^2-(1-sinx)^2)/(cos^4x))/(((1+cosx)^2-(1-cosx)^2)/(sin^4x))#
#= ((1+sinx)^2-(1-sinx)^2)/(cos^4x)*(sin^4x)/((1+cosx)^2-(1-cosx)^2)#
Expand the squared terms:
#= (cancel(1)+2sinx+cancel(sin^2x)-(cancel(1)-2sinx+cancel(sin^2x)))/(cos^4x)*(sin^4x)/(cancel(1)+2cosx+cancel(cos^2x)-(cancel(1)-2cosx+cancel(cos^2x)))#
#= (cancel(4)sinx)/(cos^4x)*(sin^4x)/(cancel(4)cosx)#
#= color(blue)(tan^5x)#