Prove it: tan^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)?

2 Answers
Mar 16, 2017

To prove

tg^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)

RHS

=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)

=(((1+sinx)^2-(1-sinx)^2)/(1-sin^2x)^2)/(((1+cosx^2)-(1-cosx)^2)/(1-cos^2x)^2)

=((4sinx)/cos^4x)/((4cosx)/(sin^4x))

=sin^5x/cos^5x=tan^5x=LHS

Proved

Mar 16, 2017

This is one of those proofs that is easier to work from right to left. Start with:

((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)

Multiply numerator and denominator of the embedded fractions by the "conjugates" (e.g. 1pmsinx on 1 ∓ sinx). You get that, e.g., (1+sinx)(1-sinx) = 1-sin^2x.

= (((1+sinx)/((1-sin^2x)(1-sinx)))-((1-sinx)/((1-sin^2x)(1+sinx))))/(((1+cosx)/((1-cos^2x)(1-cosx)))-((1-cosx)/((1-cos^2x)(1+cosx)))

Repeat the previous step to simplify the denominator in the embedded fractions further:

= (((1+sinx)^2/((1-sin^2x)^2))-((1-sinx)^2/((1-sin^2x)^2)))/(((1+cosx)^2/((1-cos^2x)^2))-((1-cosx)^2/((1-cos^2x)^2))

Use the identities 1-sin^2x = cos^2x and 1-cos^2x = sin^2x to get:

= (((1+sinx)^2/(cos^4x))-((1-sinx)^2/(cos^4x)))/(((1+cosx)^2/(sin^4x))-((1-cosx)^2/(sin^4x))

Combine fractions and flip to multiply the reciprocals:

= (((1+sinx)^2-(1-sinx)^2)/(cos^4x))/(((1+cosx)^2-(1-cosx)^2)/(sin^4x))

= ((1+sinx)^2-(1-sinx)^2)/(cos^4x)*(sin^4x)/((1+cosx)^2-(1-cosx)^2)

Expand the squared terms:

= (cancel(1)+2sinx+cancel(sin^2x)-(cancel(1)-2sinx+cancel(sin^2x)))/(cos^4x)*(sin^4x)/(cancel(1)+2cosx+cancel(cos^2x)-(cancel(1)-2cosx+cancel(cos^2x)))

= (cancel(4)sinx)/(cos^4x)*(sin^4x)/(cancel(4)cosx)

= color(blue)(tan^5x)