Prove it: #tan^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)#?

2 Answers
Mar 16, 2017

To prove

#tg^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)#

RHS

#=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)#

#=(((1+sinx)^2-(1-sinx)^2)/(1-sin^2x)^2)/(((1+cosx^2)-(1-cosx)^2)/(1-cos^2x)^2)#

#=((4sinx)/cos^4x)/((4cosx)/(sin^4x))#

#=sin^5x/cos^5x=tan^5x=LHS#

Proved

Mar 16, 2017

This is one of those proofs that is easier to work from right to left. Start with:

#((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)#

Multiply numerator and denominator of the embedded fractions by the "conjugates" (e.g. #1pmsinx# on #1 ∓ sinx#). You get that, e.g., #(1+sinx)(1-sinx) = 1-sin^2x#.

#= (((1+sinx)/((1-sin^2x)(1-sinx)))-((1-sinx)/((1-sin^2x)(1+sinx))))/(((1+cosx)/((1-cos^2x)(1-cosx)))-((1-cosx)/((1-cos^2x)(1+cosx)))#

Repeat the previous step to simplify the denominator in the embedded fractions further:

#= (((1+sinx)^2/((1-sin^2x)^2))-((1-sinx)^2/((1-sin^2x)^2)))/(((1+cosx)^2/((1-cos^2x)^2))-((1-cosx)^2/((1-cos^2x)^2))#

Use the identities #1-sin^2x = cos^2x# and #1-cos^2x = sin^2x# to get:

#= (((1+sinx)^2/(cos^4x))-((1-sinx)^2/(cos^4x)))/(((1+cosx)^2/(sin^4x))-((1-cosx)^2/(sin^4x))#

Combine fractions and flip to multiply the reciprocals:

#= (((1+sinx)^2-(1-sinx)^2)/(cos^4x))/(((1+cosx)^2-(1-cosx)^2)/(sin^4x))#

#= ((1+sinx)^2-(1-sinx)^2)/(cos^4x)*(sin^4x)/((1+cosx)^2-(1-cosx)^2)#

Expand the squared terms:

#= (cancel(1)+2sinx+cancel(sin^2x)-(cancel(1)-2sinx+cancel(sin^2x)))/(cos^4x)*(sin^4x)/(cancel(1)+2cosx+cancel(cos^2x)-(cancel(1)-2cosx+cancel(cos^2x)))#

#= (cancel(4)sinx)/(cos^4x)*(sin^4x)/(cancel(4)cosx)#

#= color(blue)(tan^5x)#