Prove that (cos(33))2(cos(57))2(sin(10.5))2(sin(34.5))2=2 ?

1 Answer
Oct 22, 2017

Please see below.

Explanation:

We use formulas (A) - cosA=sin(90A),

(B) - cos2Asin2A=cos2A

(C) - 2sinAcosA=sin2A,

(D) - sinA+sinB=2sin(A+B2)cos(AB2) and

(E) - sinAsinB=2cos(A+B2)sin(AB2)

cos233cos257sin210.5sin234.5

= cos233sin2(9057)(sin10.5+sin34.5)(sin10.5sin34.5) - used A

= cos233sin233(2sin22.5cos12)(2cos22.5sin12) - used D & E

= cos66(2sin22.5cos22.5×2sin12cos12) - used B

= sin(9066)sin45sin24 - used A & C

= sin2412sin24

= 2