Prove that (cosA - sinA + 1)/(cosA + sinA - 1) = cscA + cotAcosAsinA+1cosA+sinA1=cscA+cotA ?

1 Answer
Sep 14, 2016

LHS=(cosA-sinA+1)/(cosA+sinA-1)LHS=cosAsinA+1cosA+sinA1

=(sinA(cosA-sinA+1))/(sinA(cosA+sinA-1))=sinA(cosAsinA+1)sinA(cosA+sinA1)

=(sinAcosA-sin^2A+sinA)/(sinA(cosA+sinA-1))=sinAcosAsin2A+sinAsinA(cosA+sinA1)

=(sinAcosA+sinA-(1-cos^2A))/(sinA(cosA+sinA-1))=sinAcosA+sinA(1cos2A)sinA(cosA+sinA1)

=(sinA(cosA+1)-(1-cosA)(1+cosA))/(sinA(cosA+sinA-1))=sinA(cosA+1)(1cosA)(1+cosA)sinA(cosA+sinA1)

=((1+cosA)(sinA+cosA-1))/(sinA(cosA+sinA-1))=(1+cosA)(sinA+cosA1)sinA(cosA+sinA1)

=((1+cosA)cancel((sinA+cosA-1)))/(sinAcancel((cosA+sinA-1)))

=1/sinA+cosA/sinA

=cscA+cotA=RHS

Proved