Prove that csc4A+csc8A=cot2A-cot8Acsc4A+csc8A=cot2Acot8A?

1 Answer
Oct 27, 2017

RHS=cot2A-cot8ARHS=cot2Acot8A

=(cos2A)/(sin2A)-(cos8A)/(sin8A)=cos2Asin2Acos8Asin8A

=(cos2Asin8A-cos8Asin2A)/(sin2Asin8A)=cos2Asin8Acos8Asin2Asin2Asin8A

=sin(8A-2A)/(sin2Asin8A)=sin(8A2A)sin2Asin8A

=(2cos2Asin6A)/(2cos2Asin2Asin8A)=2cos2Asin6A2cos2Asin2Asin8A

=(sin8A+sin4A)/(sin4Asin8A)=sin8A+sin4Asin4Asin8A

=(sin8A)/(sin4Asin8A)+(sin4A)/(sin4Asin8A)=sin8Asin4Asin8A+sin4Asin4Asin8A

=1/(sin4A)+1/(sin8A)=1sin4A+1sin8A

=csc4A+csc8A=LHS=csc4A+csc8A=LHS