Prove that for an ideal-gas reaction, (dlnK_C^@)/(dT) = (DeltaU^@)/(RT^2)?

I found this question particularly difficult, but I figured it out and wanted to share.

1 Answer
Oct 9, 2016

For an ideal gas reaction, we begin with the definition of K_C^@

K_C^@ = K_P^@((P^@)/(RTc^@))^(Deltan)

and differentiate lnK_C^@ with respect to T. We would obtain, noting the usage of the product rule on K_P^@ = e^(-DeltaG^@/(RT)) (since DeltaG^@ = DeltaG^@(T)):

(dlnK_C^@)/(dT)

= d/(dT)[ln{e^(-(DeltaG^@)/(RT))((P^@)/(RTc^@))^(Deltan)}]

= d/(dT)[-(DeltaG^@)/(RT) + Deltanln((P^@)/(RTc^@))]

= d/(dT)[-(DeltaG^@)/(RT)] + Deltan(cancel(RTc^@)/cancel(P^@))*-cancel(P^@)/(cancel(Rc^@)T^cancel(2))

= stackrel("Product Rule")overbrace((DeltaG^@)/(RT^2) - 1/(RT)(dDeltaG^@)/(dT)) - (Deltan)/T

By definition, since DeltaG^@ is defined for a fixed "1 bar" pressure, we can refer to the Maxwell relation

dG^@ = -S^@dT + VdP^@

or

dDeltaG^@ = -DeltaS^@dT + DeltaVdP^@

and acquire

((delDeltaG^@)/(delT))_(P^@) = (dDeltaG^@)/(dT) = -DeltaS^@

Then we proceed to acquire the result by noting that DeltaG^@ = DeltaH^@ - TDeltaS^@, and that for an ideal gas, DeltaH^@ = DeltaU^@ + Delta(PV) = DeltaU^@ + DeltanRT:

=> (DeltaG^@)/(RT^2) + (DeltaS^@)/(RT) - (Deltan)/T = (DeltaG^@)/(RT^2) + (TDeltaS^@)/(RT^2) - (DeltanRT)/(RT^2)

= (DeltaG^@ + TDeltaS^@ - DeltanRT)/(RT^2) = (DeltaH^@ - cancel(TDeltaS^@ + TDeltaS^@) - DeltanRT)/(RT^2)

= (DeltaU^@ + Delta(PV) - DeltanRT)/(RT^2) = (DeltaU^@ + cancel(DeltanRT) - cancel(DeltanRT))/(RT^2)

= color(blue)((DeltaU^@)/(RT^2))