Prove that for an ideal-gas reaction, (dlnK_C^@)/(dT) = (DeltaU^@)/(RT^2)?
I found this question particularly difficult, but I figured it out and wanted to share.
I found this question particularly difficult, but I figured it out and wanted to share.
1 Answer
For an ideal gas reaction, we begin with the definition of
K_C^@ = K_P^@((P^@)/(RTc^@))^(Deltan)
and differentiate
(dlnK_C^@)/(dT)
= d/(dT)[ln{e^(-(DeltaG^@)/(RT))((P^@)/(RTc^@))^(Deltan)}]
= d/(dT)[-(DeltaG^@)/(RT) + Deltanln((P^@)/(RTc^@))]
= d/(dT)[-(DeltaG^@)/(RT)] + Deltan(cancel(RTc^@)/cancel(P^@))*-cancel(P^@)/(cancel(Rc^@)T^cancel(2))
= stackrel("Product Rule")overbrace((DeltaG^@)/(RT^2) - 1/(RT)(dDeltaG^@)/(dT)) - (Deltan)/T
By definition, since
dG^@ = -S^@dT + VdP^@
or
dDeltaG^@ = -DeltaS^@dT + DeltaVdP^@
and acquire
((delDeltaG^@)/(delT))_(P^@) = (dDeltaG^@)/(dT) = -DeltaS^@
Then we proceed to acquire the result by noting that
=> (DeltaG^@)/(RT^2) + (DeltaS^@)/(RT) - (Deltan)/T = (DeltaG^@)/(RT^2) + (TDeltaS^@)/(RT^2) - (DeltanRT)/(RT^2)
= (DeltaG^@ + TDeltaS^@ - DeltanRT)/(RT^2) = (DeltaH^@ - cancel(TDeltaS^@ + TDeltaS^@) - DeltanRT)/(RT^2)
= (DeltaU^@ + Delta(PV) - DeltanRT)/(RT^2) = (DeltaU^@ + cancel(DeltanRT) - cancel(DeltanRT))/(RT^2)
= color(blue)((DeltaU^@)/(RT^2))