Prove that the paraboloids: #x^2/a_1^2+y^2/b_1^2=(2z)/c_1#; #x^2/a_2^2+y^2/b_2^2=(2z)/c_2#; #x^2/a_3^2+y^2/b_3^2=(2z)/c_3# Have a common tangent plane if: #|(a_1^2 a_2^2 a_3^2), (b_1^2 b_2^2 b_3^2), (c_1 c_2 c_3)|=0#?
Prove that the paraboloids:
#x^2/a_1^2+y^2/b_1^2=(2z)/c_1# ;
#x^2/a_2^2+y^2/b_2^2=(2z)/c_2# ;
#x^2/a_3^2+y^2/b_3^2=(2z)/c_3#
Have a common tangent plane if:
#|(a_1^2 a_2^2 a_3^2), (b_1^2 b_2^2 b_3^2), (c_1 c_2 c_3)|=0#
Here #a_i, b_i, c_i in RR\{0}#
Prove that the paraboloids:
Have a common tangent plane if:
Here