Prove that,(vecA+2vecB).(2vecA-3vecB)=2A^2+ABcostheta -6B^2thanks?

1 Answer
Jun 11, 2017

See the proof below

Explanation:

We need

cos0=1

vecA*vecA=A*A*cos0=A^2

vecB*vecB=B*B*cos0=B^2

vecA*vecB=ABcostheta

Where theta is the angle between vecA and vecB
Therefore

(vecA+2vecB)(2vecA-3vecB)

=vecA*2vecA-vecA*3vecB+2vecA*2vecB-2vecB*3vecB

=2A^2+vecA*vecB-6B^2

=2A^2+ABcostheta-6B^2

QED