Prove the given?

enter image source here

2 Answers
Jul 31, 2017

see explanation.

Explanation:

enter image source here
Given #DeltaABC# is an equilateral triangle,
#=> angleABC=angleACB=angleBAC=60^@#
Given #PQ# // #AC#
#=> DeltaQBP and DeltaABC# are similar
#=> angleQBP=angleQPB=angleBQP=60^@#
Let #BP=x, => PQ=QB=x#
Given #CR=BP, => CR=x#
#angleQPM=180-60=120^@#
#angleRCM=180-60=120^@#
#=> angleQPM=angleRCM#
Let #angleQMP=y, => angleRMC=y#

As #angleQPM=angleRCM, angleQMP=angleRMC, and QP=RC#,
#=> DeltaQPM and DeltaRCM# are congruent.
#=> (QP)/(PM)=(RC)/(CM)#

#=> PM=CM#

Hence, #QR# bisects #PC# at #M#. (proved)

Jul 31, 2017

See below.

Explanation:

Calling

#A=(rho/2,rho sqrt3/2)#
#B=(0,0)#
#C=(rho,0)#

we have

#{(Q = B + lambda_1 (A - B)),( P = B + lambda_1 (C - B)),( R = A + (1 + lambda_2) (C - A)),( s_1 = P + mu_1 (C - P)),( s_2 = Q + mu_2 (R - Q)):}#

Here #0 le lambda_i le 1# and #0 le mu_i le 1#

To know if #s_1# and #s_2# intersect is necessary and sufficient that the equation

#s_1 = s_2# or

#P + mu_1 (C - P)=Q + mu_2 (R - Q)#

have a solution with #mu_1^@, mu_2^@# such that

#0 le mu_i^@ le 1#

but the system

#P + mu_1 (C - P)=Q + mu_2 (R - Q)#

after the pertinent substitutions reads

#(((2 lambda_1-2) rho, (2 - lambda_1 + lambda_2) rho),(0, (lambda_1 + lambda_2) rho))((mu_1),(mu_2)) = ((lambda_1 rho),(lambda_1 rho))#

and solving for #mu_1,mu_2# we obtain

#(mu_1^@,mu_2^@) = (lambda_1/(lambda_1 + lambda_2), lambda_1/(lambda_1 + lambda_2))#
then as can we see

#0 le mu_i^@ le 1# and then segments #s_1# and #s_2# intersect.