Calling
#A=(rho/2,rho sqrt3/2)#
#B=(0,0)#
#C=(rho,0)#
we have
#{(Q = B + lambda_1 (A - B)),(
P = B + lambda_1 (C - B)),(
R = A + (1 + lambda_2) (C - A)),(
s_1 = P + mu_1 (C - P)),(
s_2 = Q + mu_2 (R - Q)):}#
Here #0 le lambda_i le 1# and #0 le mu_i le 1#
To know if #s_1# and #s_2# intersect is necessary and sufficient that the equation
#s_1 = s_2# or
#P + mu_1 (C - P)=Q + mu_2 (R - Q)#
have a solution with #mu_1^@, mu_2^@# such that
#0 le mu_i^@ le 1#
but the system
#P + mu_1 (C - P)=Q + mu_2 (R - Q)#
after the pertinent substitutions reads
#(((2 lambda_1-2) rho, (2 - lambda_1 + lambda_2) rho),(0, (lambda_1 +
lambda_2) rho))((mu_1),(mu_2)) = ((lambda_1 rho),(lambda_1 rho))#
and solving for #mu_1,mu_2# we obtain
#(mu_1^@,mu_2^@) = (lambda_1/(lambda_1 + lambda_2), lambda_1/(lambda_1 + lambda_2))#
then as can we see
#0 le mu_i^@ le 1# and then segments #s_1# and #s_2# intersect.