Prove the trig identity?
#(1+cosx)/(1-cosx)# = #tan^2x/(sec^2x-1)^2#
1 Answer
Jan 14, 2018
Well, let's start from the left...
#(1 + cosx)/(1 - cosx)#
Multiply through by
#= (1 + cosx)/(1 - cosx) cdot (1//cosx)/(1//cosx)#
#= (1/cosx + 1)/(1/cosx - 1)#
Use the fact that
#= (secx + 1)/(secx - 1)cdot (secx - 1)/(secx - 1)#
#= (sec^2x - 1)/(secx - 1)^2#
Lastly, use the identity that
#= (tan^2x)/(secx - 1)^2#
#color(red)(ne (tan^2x)/(sec^2x - 1)^2)#
And we have shown that the identity is incorrect.