(sec a+1)=tana(2+√3) (seca+1)=tana(2+√3)
=>(seca+1)xxcosa=cosaxxtana(2+√3) ⇒(seca+1)×cosa=cosa×tana(2+√3)
=>(cosa+1)=sina(2+√3) ⇒(cosa+1)=sina(2+√3)
=>(2+√3)2sin(a/2)cos(a/2)=2cos^2(a/2) ⇒(2+√3)2sin(a2)cos(a2)=2cos2(a2)
=>[(2+√3)sin(a/2)-cos(a/2)]2cos(a/2)=0⇒[(2+√3)sin(a2)−cos(a2)]2cos(a2)=0
So cos (a/2)=0=cos(pi/2)cos(a2)=0=cos(π2)
=>a/2=pi/2⇒a2=π2
=>a=pi⇒a=π
Again
[(2+√3)sin(a/2)-cos(a/2)]=0[(2+√3)sin(a2)−cos(a2)]=0
=>(2+√3)sin(a/2)=cos(a/2)]⇒(2+√3)sin(a2)=cos(a2)]
=>sin(a/2)/cos(a/2)=1/(2+√3)⇒sin(a2)cos(a2)=12+√3
=>tan(a/2)=2-sqrt3=tan(pi/12)⇒tan(a2)=2−√3=tan(π12) color(red)"see note below"see note below
=>a/2=pi/12⇒a2=π12
=>a=pi/6⇒a=π6
Alternative method
(sec a+1)=tana(2+√3) (seca+1)=tana(2+√3)
=>(sec a+1)-tana(2+√3)=0 ⇒(seca+1)−tana(2+√3)=0
=>(sqrt(sec a+1))^2-(sqrt(sec^2a-1))(2+√3)=0 ⇒(√seca+1)2−(√sec2a−1)(2+√3)=0
=>(sqrt(sec a+1))[sqrt(seca+1)-(sqrt(seca-1))(2+√3)]=0 ⇒(√seca+1)[√seca+1−(√seca−1)(2+√3)]=0
So sqrt(sec a+1)=0√seca+1=0
=>sec a=-1⇒seca=−1
=>cosa=-1=cospi⇒cosa=−1=cosπ
When 0<= a <= 2pi0≤a≤2π
a=pia=π
Again
sqrt(seca+1)-(sqrt(seca-1))(2+√3)=0 √seca+1−(√seca−1)(2+√3)=0
=>sqrt((seca+1)/(seca-1))=(2+√3) ⇒√seca+1seca−1=(2+√3)
=>sqrt((1+cosa)/(1-cosa))=(2+√3) ⇒√1+cosa1−cosa=(2+√3)
=>sqrt((2cos^2(a/2))/(2sin^2(a/2)))=(2+√3) ⇒
⎷2cos2(a2)2sin2(a2)=(2+√3)
=>tan(a/2)=1/(2+sqrt3)=2-sqrt3=tan(pi/12)⇒tan(a2)=12+√3=2−√3=tan(π12)
=>a/2=pi/12 ⇒a2=π12
=>a=pi/6⇒a=π6
Again
=>tan(a/2)=tan(pi/12)=tan(pi+pi/12)=tan((13pi)/12)⇒tan(a2)=tan(π12)=tan(π+π12)=tan(13π12)
then a=(13pi)/6a=13π6 being >2pi>2π the solution neglected.
Note
tan(pi/12)=tan(pi/4-pi/6)tan(π12)=tan(π4−π6)
=(tan(pi/4)-tan(pi/6))/(1-tan(pi/4)*tan(pi/6))=tan(π4)−tan(π6)1−tan(π4)⋅tan(π6)
=(1-1/sqrt3)/(1+1*1/sqrt3)=1−1√31+1⋅1√3
=(sqrt3-1)/(sqrt3+1)=√3−1√3+1
=(sqrt3-1)^2/((sqrt3)^2-1^2)=(√3−1)2(√3)2−12
=(4-2sqrt3)/(3-1)=4−2√33−1
=(4-2sqrt3)/2=4−2√32
=2-sqrt3=2−√3