(sec a+1)=tana(2+√3) (seca+1)=tana(2+3) 0<=a<=2π??

2 Answers
Feb 2, 2018

(sec a+1)=tana(2+√3) (seca+1)=tana(2+3)

=>(seca+1)xxcosa=cosaxxtana(2+√3) (seca+1)×cosa=cosa×tana(2+3)

=>(cosa+1)=sina(2+√3) (cosa+1)=sina(2+3)

=>(2+√3)2sin(a/2)cos(a/2)=2cos^2(a/2) (2+3)2sin(a2)cos(a2)=2cos2(a2)

=>[(2+√3)sin(a/2)-cos(a/2)]2cos(a/2)=0[(2+3)sin(a2)cos(a2)]2cos(a2)=0

So cos (a/2)=0=cos(pi/2)cos(a2)=0=cos(π2)

=>a/2=pi/2a2=π2

=>a=pia=π

Again
[(2+√3)sin(a/2)-cos(a/2)]=0[(2+3)sin(a2)cos(a2)]=0

=>(2+√3)sin(a/2)=cos(a/2)](2+3)sin(a2)=cos(a2)]

=>sin(a/2)/cos(a/2)=1/(2+√3)sin(a2)cos(a2)=12+3

=>tan(a/2)=2-sqrt3=tan(pi/12)tan(a2)=23=tan(π12) color(red)"see note below"see note below

=>a/2=pi/12a2=π12

=>a=pi/6a=π6

Alternative method

(sec a+1)=tana(2+√3) (seca+1)=tana(2+3)

=>(sec a+1)-tana(2+√3)=0 (seca+1)tana(2+3)=0

=>(sqrt(sec a+1))^2-(sqrt(sec^2a-1))(2+√3)=0 (seca+1)2(sec2a1)(2+3)=0

=>(sqrt(sec a+1))[sqrt(seca+1)-(sqrt(seca-1))(2+√3)]=0 (seca+1)[seca+1(seca1)(2+3)]=0

So sqrt(sec a+1)=0seca+1=0

=>sec a=-1seca=1

=>cosa=-1=cospicosa=1=cosπ

When 0<= a <= 2pi0a2π
a=pia=π

Again

sqrt(seca+1)-(sqrt(seca-1))(2+√3)=0 seca+1(seca1)(2+3)=0

=>sqrt((seca+1)/(seca-1))=(2+√3) seca+1seca1=(2+3)

=>sqrt((1+cosa)/(1-cosa))=(2+√3) 1+cosa1cosa=(2+3)

=>sqrt((2cos^2(a/2))/(2sin^2(a/2)))=(2+√3)  2cos2(a2)2sin2(a2)=(2+3)

=>tan(a/2)=1/(2+sqrt3)=2-sqrt3=tan(pi/12)tan(a2)=12+3=23=tan(π12)

=>a/2=pi/12 a2=π12

=>a=pi/6a=π6

Again
=>tan(a/2)=tan(pi/12)=tan(pi+pi/12)=tan((13pi)/12)tan(a2)=tan(π12)=tan(π+π12)=tan(13π12)

then a=(13pi)/6a=13π6 being >2pi>2π the solution neglected.

Note

tan(pi/12)=tan(pi/4-pi/6)tan(π12)=tan(π4π6)

=(tan(pi/4)-tan(pi/6))/(1-tan(pi/4)*tan(pi/6))=tan(π4)tan(π6)1tan(π4)tan(π6)

=(1-1/sqrt3)/(1+1*1/sqrt3)=1131+113

=(sqrt3-1)/(sqrt3+1)=313+1

=(sqrt3-1)^2/((sqrt3)^2-1^2)=(31)2(3)212

=(4-2sqrt3)/(3-1)=42331

=(4-2sqrt3)/2=4232

=2-sqrt3=23

Feb 2, 2018

a in {pi/6,pi} sub [0,2pi]a{π6,π}[0,2π].

Explanation:

We have, sec^2a-1=tanasec2a1=tana.

:. (seca+1)(seca-1)=tan^2a.

Sub.ing the given value, (seca+1)=(2+sqrt3)tana...(1), we get,

(2+sqrt3)tana(seca-1)=tan^2a, or,

tan^2a-(2+sqrt3)tana(seca-1)=0.

:. tana{tana-(2+sqrt3)(seca-1)}=0.

:. tana=0, or, tana=(2+sqrt3)(seca-1).

Case 1 : tana=0.

tana=0" with, "a in [0,2pi] rArr a=0,pi,2pi.

But, a=0 and 2pi do not satisfy the given eqn.

:. a=pi.

Case 2 : tana=(2+sqrt3)(seca-1).

tana=(2+sqrt3)(seca-1) rArr seca-1=tana/(2+sqrt3).

:. seca-1=(2-sqrt3)tana............(2).

(1)+(2) rArr 2seca=4tana, i.e., sina=1/2.

sina=1/2," read with "a in [0,2pi] rArr a=pi/6, (pi-pi/6)=5pi/6

Here again, a=5pi/6 is extraneous.

:. a=pi/6.

Altogether, a in {pi/6,pi} sub [0,2pi].