#sec^2theta/(2tantheta) = #? Explain And Answer Question

1 Answer
May 2, 2018

#1/2cscthetasectheta#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sectheta=1/costheta" and "tantheta=sintheta/costheta#

#•color(white)(x)csctheta=1/sintheta#

#rArr(1/(cos^2theta))/((2sintheta)/costheta)#

#=1/(cancel(costheta)costheta)xxcancel(costheta)/(2sintheta)#

#=1/(2sinthetacostheta)#

#=1/2xx1/sinthetaxx1/costheta=1/2cscthetasectheta#