Simplify the expression?: 1/(sqrt(144)+sqrt(145))+1/(sqrt(145)+sqrt(146))+...+1/(sqrt(168)+sqrt(169))
Simplify the expression:
1/(sqrt(144)+sqrt(145))+1/(sqrt(145)+sqrt(146))+...+1/(sqrt(168)+sqrt(169))
Simplify the expression:
1 Answer
Mar 23, 2017
Explanation:
First note that:
1/(sqrt(n+1)+sqrt(n)) = (sqrt(n+1)-sqrt(n))/((sqrt(n+1)+sqrt(n))(sqrt(n+1)-sqrt(n))
color(white)(1/(sqrt(n+1)+sqrt(n))) = (sqrt(n+1)-sqrt(n))/((n+1)-n)
color(white)(1/(sqrt(n+1)+sqrt(n))) = sqrt(n+1)-sqrt(n)
So:
1/(sqrt(144)+sqrt(145))+1/(sqrt(145)+sqrt(146))+...+1/(sqrt(168)+sqrt(169))
=(sqrt(145)-sqrt(144))+(sqrt(146)-sqrt(145))+...+(sqrt(169)-sqrt(168))
=sqrt(169)-sqrt(144)
=13-12
=1