Solve:? #5x (1 + 1/(x^2 + y^2)) = 12# and #5y (1 - 1/(x^2 + y^2)) = 4#

2 Answers
Jan 16, 2018

See the answer below...

Explanation:

#5x(1+1/(x^2+y^2))=12##color(red)" | "##5y(1-1/(x^2+y^2))=4#
#=>(1+1/(x^2+y^2))=12/(5x)##color(red)" |"##=>(1-1/(x^2+y^2))=4/(5y)#

From both equation,

#color(red)(12/(5x)+4/(5y)=2#
#=>12/(5x)=2-4/(5y)#
#=>6/(5x)=1-2/(5y)#
#=>(5x)/6=(5y)/(5y-2)#
#=>x=(6y)/(5y-2)#

Putting it in first equation,
#color(green)(5cdot(6y)/(5y-2){1+1/(y^2+((6y)/(5y-2))^2)}=12#

Help me now.

Jan 16, 2018

See below.

Explanation:

#x^2+y^2 = (5x)/(12-5x)#
#x^2+y^2=(5y)/(4-5y)#

now

#(5x)/(12-5x) = (5y)/(4-5y) rArr x = 3y# then

#(3y)^2+y^2 = (5y)/(4-5y) rArr 10y = 5/(4-5y)#

#y = {(1/10(4-sqrt6)),(1/10(4+sqrt6)):}#

#x = {(1/30(4-sqrt6)),(1/30(4+sqrt6)):}#