Solve for x on [0,2pi) : (x-pi)/cos^2x < 0 ?

2 Answers
Jul 17, 2018

x< pi and xne pi/2

Explanation:

It must be cos^2(x)ne 0 since cos^2(x) is the denominator of the given inequality and cos^2(x)>0 in the given interval except x=pi/2.
So we get x < pi

Jul 17, 2018

The solution is x in (0, pi/2)uu(pi/2, pi)

Explanation:

The inequality is

(x-pi)/(cos^2x)<0

And the interval is I=[0,2pi)

Let

f(x)=(x-pi)/(cos^2x)

Build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)0color(white)(aaaaaa)pi/2color(white)(aaaaa)picolor(white)(aaaa)3/2picolor(white)(aaaaa)2pi

color(white)(aaaa)x-picolor(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)cos^2xcolor(white)(aaaa)+color(white)(aa)||color(white)(aa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaa)-color(white)(aa)||color(white)(aa)-color(white)(aaaa)+color(white)(aaaa)+

Therefore,

f(x)<0 when x in (0, pi/2)uu(pi/2, pi)

graph{(y-(x-pi)/(cosx)^2)=0 [-16.99, 19.04, -9.44, 8.58]} #