The inequality is
(x-pi)/(cos^2x)<0
And the interval is I=[0,2pi)
Let
f(x)=(x-pi)/(cos^2x)
Build a sign chart
color(white)(aaaa)xcolor(white)(aaaa)0color(white)(aaaaaa)pi/2color(white)(aaaaa)picolor(white)(aaaa)3/2picolor(white)(aaaaa)2pi
color(white)(aaaa)x-picolor(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)cos^2xcolor(white)(aaaa)+color(white)(aa)||color(white)(aa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaa)-color(white)(aa)||color(white)(aa)-color(white)(aaaa)+color(white)(aaaa)+
Therefore,
f(x)<0 when x in (0, pi/2)uu(pi/2, pi)
graph{(y-(x-pi)/(cosx)^2)=0 [-16.99, 19.04, -9.44, 8.58]} #