Solve for x,y?

#| sinx +cosx|^(sin^2x-frac{1}4)#=1 +#|siny|#
and #cos^2y=1+sin^2y#

1 Answer
Mar 16, 2018

.Someone please double check...
see below

Explanation:

Let's try to solve for y in the second equation:
#cos^2y=1+sin^2y#
#(1-sin^2y)=1+sin^2y#
#sin^2y= 0#
#y= 0, pi#
General solution for y:
#y= 0+pin#
Where n is an element of all integers

Solve for x:
Plug in any feasible solution for y:
#|sinx+cosx|^(sin^2x-1/4)= 1+|sin(0)|#
#|sinx+cosx|^(sin^2x-1/4)= 1#
Recalling:
#x^0=1#
#sin^2x-1/4=0#
#sin^2x=1/4#
#sinx= +-1/2#
#x= pi/6, (5pi)/6, (7pi)/6, (11pi)/6#

General solutions for x:
#x= pi/6+pin#
#x= (5pi)/6+pin#
Where n is an element of all integers