Solve the differential equation dy/dx=ytan(x)?

1 Answer
Dec 5, 2017

y = Csec(x)

Explanation:

Given: dy/dx=ytan(x)

Separate variables:

dy/y = tan(x)dx

Integrate both sides:

intdy/y = inttan(x)dx

ln|y| = ln|sec(x)|+C

Use the exponential function on both sides:

e^(ln|y|) = e^(ln|sec(x)|+C)

e^(ln|y|) = e^Ce^(ln|sec(x)|)

e^(ln|y|) = Ce^(ln|sec(x)|)

y = Csec(x)