Solve the following ?

#4^x+6^x=9^x#

1 Answer
Jun 25, 2018

#4^x+6^x=9^x#

#=>4^x/6^x+1=9^x/6^x#

#=>(4/6)^x+1=(9/6)^x#

#=>(2/3)^x+1=(3/2)^x#

Let #(3/2)^x=y#

So #xlog(3/2)=logy#

#=>x=(logy)/log1.5#

Again

#y-1/y=1#

#=>y^2-y-1=0#

#=>y=(1pmsqrt(1-4*1(-1)))/2#

#=>y=(1pmsqrt5)/2#

So to get the value of #x# we can use the positive root of #y# as #x# is related with #logy#.

Hence #x=log((sqrt5+1)/2)/log1.5#