Solve (x+1)(x+3)(x+4)(x+6)=112?

1 Answer
Jun 11, 2017

x=-7/2+-isqrt31/2 or x=-7/2+-sqrt57/2

Explanation:

Let us group LHS as

(x+1)(x+6)(x+3)(x+4)=112

=>(x^2+7x+6)(x^2+7x+12)=112

Now let u=x^2+7x and then above equation becomes

(u+6)(u+12)=112

or u^2+18u+72=112

or u^2+18u-40=0

or (u+20)(u-2)=0 i.e. u=2 or -20

As such either x^2+7x+20=0 i.e. x=(-7+-sqrt(7^2-80))/2 i.e. x=-7/2+-isqrt31/2

or x^2+7x-2=0 i.e. x=(-7+-sqrt(7^2+8))/2 i.e. x=-7/2+-sqrt57/2